Movatterモバイル変換


[0]ホーム

URL:


Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
Thehttps:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

NIH NLM Logo
Log inShow account info
Access keysNCBI HomepageMyNCBI HomepageMain ContentMain Navigation
pubmed logo
Advanced Clipboard
User Guide

Full text links

Elsevier Science full text link Elsevier Science
Full text links

Actions

Review
.1995 Jan 23;66(1-2):53-9.
doi: 10.1016/0166-4328(94)00124-x.

Long-term potentiation and synaptic protein phosphorylation

Affiliations
Review

Long-term potentiation and synaptic protein phosphorylation

P Pasinelli et al. Behav Brain Res..

Abstract

Long-term potentiation (LTP) is a well known experimental model for studying the activity-dependent enhancement of synaptic plasticity, and because of its long duration and its associative properties, it has been proposed as a system to investigate the molecular mechanisms of memory formation. At present, there are several lines of evidence that indicate that pre- and postsynaptic kinases and their specific substrates are involved in molecular mechanisms underlying LTP. Many studies focus on the involvement of protein kinase C (PKC). One way to investigate the role of PKC in long-term potentiation is to determine the degree of phosphorylation of its substrates after in situ phosphorylation in hippocampal slices. Two possible targets are the presynaptic membrane-associated protein B-50 (a.k.a. GAP 43, neuromodulin and F1), which has been implicated in different forms of synaptical plasticity in the brain such as neurite outgrowth, hippocampal LTP and neurotransmitter release, and the postsynaptic protein neurogranin (a.k.a. RC3, BICKS and p17) which function remains to be determined. This review will focus on the protein kinase C activity in pre- and postsynaptic compartment during the early phase of LTP and the possible involvement of its substrates B-50 and neurogranin.

PubMed Disclaimer

Publication types

MeSH terms

Substances

LinkOut - more resources

Full text links
Elsevier Science full text link Elsevier Science
Cite
Send To

NCBI Literature Resources

MeSHPMCBookshelfDisclaimer

The PubMed wordmark and PubMed logo are registered trademarks of the U.S. Department of Health and Human Services (HHS). Unauthorized use of these marks is strictly prohibited.


[8]ページ先頭

©2009-2025 Movatter.jp