Movatterモバイル変換


[0]ホーム

URL:


Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
Thehttps:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

NIH NLM Logo
Log inShow account info
Access keysNCBI HomepageMyNCBI HomepageMain ContentMain Navigation
pubmed logo
Advanced Clipboard
User Guide

Actions

Share

.1994 Nov 22;33(46):13918-27.
doi: 10.1021/bi00250a047.

Histidine-rich glycoprotein and platelet factor 4 mask heparan sulfate proteoglycans recognized by acidic and basic fibroblast growth factor

Affiliations

Histidine-rich glycoprotein and platelet factor 4 mask heparan sulfate proteoglycans recognized by acidic and basic fibroblast growth factor

K J Brown et al. Biochemistry..

Abstract

Recent studies have shown that fibroblast growth factors (FGFs) need to interact with cell-surface heparan sulfate proteoglycans (HSPGs) in order to bind to and activate FGF receptors. In this paper, three major heparin-binding proteins, histidine-rich glycoprotein (HRG) and antithrombin III (ATIII), which are constitutively present at high concentrations in plasma, and platelet factor 4 (PF4), which is released locally at high concentrations by degranulating platelets, were tested for their ability to act as modulators of FGF activity by competing with the FGFs for cell-surface HSPGs. HRGs from both chicken and human, and human PF4, were demonstrated to compete with each other and with acidic FGF (aFGF) and basic FGF (bFGF) for binding to BALB/c 3T3 cell-surface HSPGs, whereas ATIII did not compete. Thus, HRG, PF4, aFGF, and bFGF all interact with the same HS chains on the 3T3 cell surface, either binding to the same or binding to adjacent saccharide sequences on the chains. In terms of their relative binding affinity for cell-surface HSPGs, the hierarchy was shown to be PF4 > or = bFGF > aFGF = cHRG > hHRG. HRG was also shown to significantly inhibit both FGF-stimulated and endogenous 3T3 cell DNA synthesis. HRG also binds to extracellular matrices (ECM), originating from bovine corneal endothelial cells, in a heparin-inhibitable manner. Indeed, both HRG and PF4, at physiological concentrations, were shown to effectively inhibit the binding of 125I-aFGF and 125I-bFGF to ECM. In addition, HRG was able to displace biologically active bFGF from the ECM. On the basis of these findings, it is proposed that HRG and PF4 may act as positive regulators of FGF activity by displacing FGF from the ECM or basement membrane and making FGF available to responsive cells. Alternatively, they could act as negative regulators by masking HSPGs on responsive cells and preventing FGF receptor activation.

PubMed Disclaimer

Similar articles

See all similar articles

Cited by

See all "Cited by" articles

MeSH terms

Substances

Related information

LinkOut - more resources

Cite
Send To

NCBI Literature Resources

MeSHPMCBookshelfDisclaimer

The PubMed wordmark and PubMed logo are registered trademarks of the U.S. Department of Health and Human Services (HHS). Unauthorized use of these marks is strictly prohibited.


[8]ページ先頭

©2009-2025 Movatter.jp