Movatterモバイル変換


[0]ホーム

URL:


Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
Thehttps:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

NIH NLM Logo
Log inShow account info
Access keysNCBI HomepageMyNCBI HomepageMain ContentMain Navigation
pubmed logo
Advanced Clipboard
User Guide

Full text links

Elsevier Science full text link Elsevier Science
Full text links

Actions

Review
.1993 Nov;16(11):480-7.
doi: 10.1016/0166-2236(93)90081-v.

Long-term depression of excitatory synaptic transmission and its relationship to long-term potentiation

Affiliations
Review

Long-term depression of excitatory synaptic transmission and its relationship to long-term potentiation

A Artola et al. Trends Neurosci.1993 Nov.

Abstract

In many brain areas, including the cerebellar cortex, neocortex, hippocampus, striatum and nucleus accumbens, brief activation of an excitatory pathway can produce long-term depression (LTD) of synaptic transmission. In most preparations, induction of LTD has been shown to require a minimum level of postsynaptic depolarization and a rise in the intracellular Ca2+ concentration [Ca2+]i in the postsynaptic neurone. Thus, induction conditions resemble those described for the initiation of associative long-term potentiation (LTP). However, data from structures susceptible to both LTD and LTP suggest that a stronger depolarization and a greater increase in [Ca2+]i are required to induce LTP than to initiate LTD. The source of Ca2+ appears to be less critical for the differential induction of LTP and LTD than the amplitude of the Ca2+ surge, since the activation of voltage- and ligand-gated Ca2+ conductances as well as the release from intracellular stores have all been shown to contribute to both LTD and LTP induction. LTD is induceable even at inactive synapses if [Ca2+]i is raised to the appropriate level by antidromic or heterosynaptic activation, or by raising the extracellular Ca2+ concentration [Ca2+]o. These conditions suggest a rule (called here the ABS rule) for activity-dependent synaptic modifications that differs from the classical Hebb rule and that can account for both homosynaptic LTD and LTP as well as for heterosynaptic competition and associativity.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources

Full text links
Elsevier Science full text link Elsevier Science
Cite
Send To

NCBI Literature Resources

MeSHPMCBookshelfDisclaimer

The PubMed wordmark and PubMed logo are registered trademarks of the U.S. Department of Health and Human Services (HHS). Unauthorized use of these marks is strictly prohibited.


[8]ページ先頭

©2009-2025 Movatter.jp