Cardinal directions of color space
- PMID:7147723
- DOI: 10.1016/0042-6989(82)90077-3
Cardinal directions of color space
Abstract
Thresholds for detecting changes in color are raised following viewing a field sinusoidally modulated in color over time. This effect is highly selective. For example, thresholds for detecting reddish and greenish changes from white are raised following viewing a field varying in a reddish-greenish direction, but not after viewing one varying in a yellowish-bluish direction. Similarly thresholds for yellowish and bluish changes from white are raised following viewing a field varying along a yellowish-bluish axis but not altered by exposure to reddish-greenish variation. Thresholds for chromatic changes are not raised following viewing a field varying in luminance. Thresholds for changes in luminance are raised following viewing a field varying in luminance but not altered by exposure to purely chromatic variation. Since this selectivity is found only for these directions and not intermediate directions in color space we conclude that these directions are cardinal, that is, signals varying along these directions are carried along separate, fatiguable, second stage pathways. The results conform to the expectations of opponent process theory with the important exception that the yellowish-bluish cardinal direction is a tritanopic confusion line and not a red-green equilibrium line.
Similar articles
- Motion minima for different directions in color space.Webster MA, Mollon JD.Webster MA, et al.Vision Res. 1997 Jun;37(11):1479-98. doi: 10.1016/s0042-6989(96)00289-1.Vision Res. 1997.PMID:9205710
- Selective cone suppression by the L-M- and M-L-cone-opponent mechanisms in the luminance pathway.Tsujimura S, Shioiri S, Hirai Y, Yaguchi H.Tsujimura S, et al.J Opt Soc Am A Opt Image Sci Vis. 1999 Jun;16(6):1217-28. doi: 10.1364/josaa.16.001217.J Opt Soc Am A Opt Image Sci Vis. 1999.PMID:10376351
- Colour detection thresholds as a function of chromatic adaptation and light level.Jennings BJ, Barbur JL.Jennings BJ, et al.Ophthalmic Physiol Opt. 2010 Sep;30(5):560-7. doi: 10.1111/j.1475-1313.2010.00773.x.Ophthalmic Physiol Opt. 2010.PMID:20883340
- Non-cardinal color perception across the retina: easy for orange, hard for burgundy and sky blue.Gunther KL.Gunther KL.J Opt Soc Am A Opt Image Sci Vis. 2014 Apr 1;31(4):A274-82. doi: 10.1364/JOSAA.31.00A274.J Opt Soc Am A Opt Image Sci Vis. 2014.PMID:24695183
- Color appearance and the end of Hering's Opponent-Colors Theory.Conway BR, Malik-Moraleda S, Gibson E.Conway BR, et al.Trends Cogn Sci. 2023 Sep;27(9):791-804. doi: 10.1016/j.tics.2023.06.003. Epub 2023 Jul 1.Trends Cogn Sci. 2023.PMID:37394292Free PMC article.Review.
Cited by
- Neural locus of color afterimages.Zaidi Q, Ennis R, Cao D, Lee B.Zaidi Q, et al.Curr Biol. 2012 Feb 7;22(3):220-4. doi: 10.1016/j.cub.2011.12.021. Epub 2012 Jan 19.Curr Biol. 2012.PMID:22264612Free PMC article.
- Pupillary responses to differences in luminance, color and set size.Oster J, Huang J, White BJ, Radach R, Itti L, Munoz DP, Wang CA.Oster J, et al.Exp Brain Res. 2022 Jun;240(6):1873-1885. doi: 10.1007/s00221-022-06367-x. Epub 2022 Apr 21.Exp Brain Res. 2022.PMID:35445861
- Latency characteristics of the short-wavelength-sensitive cones and their associated pathways.Lee RJ, Mollon JD, Zaidi Q, Smithson HE.Lee RJ, et al.J Vis. 2009 Nov 12;9(12):5.1-17. doi: 10.1167/9.12.5.J Vis. 2009.PMID:20053096Free PMC article.
- A functional angle on some after-effects in cortical vision.Clifford CW, Wenderoth P, Spehar B.Clifford CW, et al.Proc Biol Sci. 2000 Sep 7;267(1454):1705-10. doi: 10.1098/rspb.2000.1198.Proc Biol Sci. 2000.PMID:12233765Free PMC article.Review.
- Chromatic adaptation from achromatic stimuli with implied color.Lee RJ, Mather G.Lee RJ, et al.Atten Percept Psychophys. 2019 Nov;81(8):2890-2901. doi: 10.3758/s13414-019-01716-5.Atten Percept Psychophys. 2019.PMID:31201659Free PMC article.
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources