Orientation of retinal in bacteriorhodopsin as studied by cross-linking using a photosensitive analog of retinal
- PMID:7142168
Orientation of retinal in bacteriorhodopsin as studied by cross-linking using a photosensitive analog of retinal
Abstract
The photosensitive m-diazirinophenyl analog of retinal (Fig. 1, II) bound to bacterio-opsin at Lys-216 and regenerated a chromophore with lambda max at 470 nm. Photolysis of the complex at 365 nm resulted in covalent cross-linking of the retinal analog to the bacterio-opsin in greater 30% yield. Investigation of the sites of cross-linking between the 3H-labeled retinal analog and the protein showed the peptide fragment (amino acid residues 190-248) to be the main radioactively labeled product. Stepwise Edman degradation showed Ser-193 and Glu-194 to be the predominant sites of cross-linking. These results show that the chromophore in bacteriorhodopsin is inclined towards helix 6 and towards the exterior of the cell. These data also provide information on the approximate angle that the chromophore makes with the plane of the membrane and they require a modification of the current secondary structure model for bacteriorhodopsin.
Similar articles
- Light-driven proton translocation by bacteriorhodopsin reconstituted with the phenyl analog of retinal.Bayley H, Radhakrishnan R, Huang KS, Khorana HG.Bayley H, et al.J Biol Chem. 1981 Apr 25;256(8):3797-801.J Biol Chem. 1981.PMID:7217054
- Site of attachment of retinal in bacteriorhodopsin.Bayley H, Huang KS, Radhakrishnan R, Ross AH, Takagaki Y, Khorana HG.Bayley H, et al.Proc Natl Acad Sci U S A. 1981 Apr;78(4):2225-9. doi: 10.1073/pnas.78.4.2225.Proc Natl Acad Sci U S A. 1981.PMID:6941281Free PMC article.
- Orientation of retinal in bovine rhodopsin determined by cross-linking using a photoactivatable analog of 11-cis-retinal.Nakayama TA, Khorana HG.Nakayama TA, et al.J Biol Chem. 1990 Sep 15;265(26):15762-9.J Biol Chem. 1990.PMID:2144289
- The incorporation of tritiated retinyl moiety into the active-site lysine residue of bacteriorhodopsin.Mullen E, Gore MG, Akhtar M.Mullen E, et al.Biochem J. 1979 Oct 1;183(1):175-8. doi: 10.1042/bj1830175.Biochem J. 1979.PMID:534482Free PMC article.
- Photoaffinity labeling of rhodopsin and bacteriorhodopsin.Nakanishi K, Zhang H, Lerro KA, Takekuma S, Yamamoto T, Lien TH, Sastry L, Baek DJ, Moquin-Pattey C, Boehm MF, et al.Nakanishi K, et al.Biophys Chem. 1995 Sep-Oct;56(1-2):13-22. doi: 10.1016/0301-4622(95)00010-u.Biophys Chem. 1995.PMID:7662862Review.
Cited by
- Mapping of contact sites in complex formation between transducin and light-activated rhodopsin by covalent crosslinking: use of a photoactivatable reagent.Cai K, Itoh Y, Khorana HG.Cai K, et al.Proc Natl Acad Sci U S A. 2001 Apr 24;98(9):4877-82. doi: 10.1073/pnas.051632898.Proc Natl Acad Sci U S A. 2001.PMID:11320237Free PMC article.
- Absorption- and photocurrent-measurements of two aspartat mutants of bacteriorhodopsin.Butt HJ, Bamberg E, Oesterhelt D.Butt HJ, et al.J Protein Chem. 1989 Jun;8(3):347-9. doi: 10.1007/BF01674273.J Protein Chem. 1989.PMID:2789680No abstract available.
- Reformation of crystalline purple membrane from purified bacteriorhodopsin fragments.Popot JL, Trewhella J, Engelman DM.Popot JL, et al.EMBO J. 1986 Nov;5(11):3039-44. doi: 10.1002/j.1460-2075.1986.tb04603.x.EMBO J. 1986.PMID:3792305Free PMC article.
- Electrospray-ionization mass spectrometry of intact intrinsic membrane proteins.Whitelegge JP, Gundersen CB, Faull KF.Whitelegge JP, et al.Protein Sci. 1998 Jun;7(6):1423-30. doi: 10.1002/pro.5560070619.Protein Sci. 1998.PMID:9655347Free PMC article.
- Automated method for modeling seven-helix transmembrane receptors from experimental data.Herzyk P, Hubbard RE.Herzyk P, et al.Biophys J. 1995 Dec;69(6):2419-42. doi: 10.1016/S0006-3495(95)80112-8.Biophys J. 1995.PMID:8599649Free PMC article.
Publication types
MeSH terms
Substances
Related information
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical