The k-trajectory formulation of the NMR imaging process with applications in analysis and synthesis of imaging methods
- PMID:6646065
- DOI: 10.1118/1.595331
The k-trajectory formulation of the NMR imaging process with applications in analysis and synthesis of imaging methods
Abstract
The fundamental operations of nuclear magnetic resonance (NMR) imaging can be formulated, for a large number of methods, as sampling the object distribution in the Fourier spatial-frequency domain, followed by processing the digitized data (often simply by Fourier transformation) to produce a digital image. In these methods, which include reconstruction from projections, Fourier imaging, spin-warp imaging, and echo-planar imaging, controllable gradient fields determine the points in the spatial-frequency domain which are sampled at any given time during the acquisition of data (the free induction decay, or FID). The detailed time dependence of the resulting trajectory of sample points (the k trajectory) determines the relative weight and accuracy with which image information at each spatial frequency is measured, establishing theoretical limitations on image quality achievable with a given imaging method. We demonstrate here that these considerations may be used to compare the theoretical capabilities of NMR imaging methods, and to derive new imaging methods with optimal theoretical imaging properties.
Similar articles
- Time-domain frequency-selective processing in nuclear magnetic resonance: a spatial-spectral holographic perspective.Kiruluta AJ, Anderson K, Barbastathis G.Kiruluta AJ, et al.J Opt Soc Am A Opt Image Sci Vis. 2006 Jun;23(6):1391-9. doi: 10.1364/josaa.23.001391.J Opt Soc Am A Opt Image Sci Vis. 2006.PMID:16715158
- Acquisition and accuracy in rapid NMR imaging methods.Twieg DB.Twieg DB.Magn Reson Med. 1985 Oct;2(5):437-52. doi: 10.1002/mrm.1910020504.Magn Reson Med. 1985.PMID:4094558
- Design of flyback echo-planar readout gradients for magnetic resonance spectroscopic imaging.Cunningham CH, Vigneron DB, Chen AP, Xu D, Nelson SJ, Hurd RE, Kelley DA, Pauly JM.Cunningham CH, et al.Magn Reson Med. 2005 Nov;54(5):1286-9. doi: 10.1002/mrm.20663.Magn Reson Med. 2005.PMID:16187273Clinical Trial.
- K-space in the clinic.Paschal CB, Morris HD.Paschal CB, et al.J Magn Reson Imaging. 2004 Feb;19(2):145-59. doi: 10.1002/jmri.10451.J Magn Reson Imaging. 2004.PMID:14745747Review.
- Spiral imaging: a critical appraisal.Block KT, Frahm J.Block KT, et al.J Magn Reson Imaging. 2005 Jun;21(6):657-68. doi: 10.1002/jmri.20320.J Magn Reson Imaging. 2005.PMID:15906329Review.
Cited by
- Diffusion weighted MRI by spatiotemporal encoding: analytical description and in vivo validations.Solomon E, Shemesh N, Frydman L.Solomon E, et al.J Magn Reson. 2013 Jul;232:76-86. doi: 10.1016/j.jmr.2013.02.014. Epub 2013 Mar 14.J Magn Reson. 2013.PMID:23562003Free PMC article.
- Nuclear magnetic resonance imaging using a microcomputer.Pittard S, Ellis RE, Jacoby RK, Vennart W.Pittard S, et al.Med Biol Eng Comput. 1988 Mar;26(2):221-4. doi: 10.1007/BF02442269.Med Biol Eng Comput. 1988.PMID:3226180No abstract available.
- Accelerating Brain MR Imaging With Multisequence and Convolutional Neural Networks.Mo Z, Sui H, Lv Z, Huang X, Li G, Shen D, Liu L, Liao S.Mo Z, et al.Brain Behav. 2024 Nov;14(11):e70163. doi: 10.1002/brb3.70163.Brain Behav. 2024.PMID:39552110Free PMC article.
- COMPLEX-VALUED TIME SERIES MODELING FOR IMPROVED ACTIVATION DETECTION IN FMRI STUDIES.Adrian DW, Maitra R, Rowe DB.Adrian DW, et al.Ann Appl Stat. 2018 Sep;12(3):1451-1478. doi: 10.1214/17-AOAS1117. Epub 2018 Sep 11.Ann Appl Stat. 2018.PMID:30294404Free PMC article.
- Addressing Motion Blurs in Brain MRI Scans Using Conditional Adversarial Networks and Simulated Curvilinear Motions.Li S, Zhao Y.Li S, et al.J Imaging. 2022 Mar 23;8(4):84. doi: 10.3390/jimaging8040084.J Imaging. 2022.PMID:35448211Free PMC article.
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources