Movatterモバイル変換


[0]ホーム

URL:


Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
Thehttps:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

NIH NLM Logo
Log inShow account info
Access keysNCBI HomepageMyNCBI HomepageMain ContentMain Navigation
pubmed logo
Advanced Clipboard
User Guide

Full text links

American Society for Clinical Investigation full text link American Society for Clinical Investigation Free PMC article
Full text links

Actions

.1972 Apr;51(4):741-8.
doi: 10.1172/JCI106868.

Phenobarbital-induced alterations in vitamin D metabolism

Phenobarbital-induced alterations in vitamin D metabolism

T J Hahn et al. J Clin Invest.1972 Apr.

Abstract

The metabolic fate of intravenously injected vitamin D(3)-1,2-(3)H (D(3)-(3)H) was studied in two normal individuals on chronic phenobarbital therapy. Silicic acid column chromatography of lipid-soluble plasma extracts obtained serially for 96 hr after D(3)-(3)H injection demonstrated a decreased plasma D(3)-(3)H half-life and increased conversion to more polar metabolites. The polar metabolites formed included several with chromatographic mobility similar to known biologically inactive vitamin D metabolites and one with chromatographic mobility identical to 25-hydroxycholecalciferol. Disappearance of this latter material was also accelerated. A child with rickets and a normal volunteer studied before and after a 2 wk course of phenobarbital therapy demonstrated similar alterations in D(3)-(3)H metabolism. When liver microsomes from 3-wk-old Sprague-Dawley rats treated with phenobarbital were incubated with D(3)-(3)H, polar metabolites were produced with chromatographic mobility similar to the plasma D(3)-(3)H metabolites from phenobarbital-treated humans. Similar incubations employing 25-hydroxy-cholecalciferol-26-27-(3)H as the substrate also demonstrated an increased conversion to polar metabolites. The data suggest that the reported increased incidence of osteomalacia observed in patients on chronic anticonvulsant therapy may be the result of an accelerated conversion of vitamin D and its active metabolite, 25-hydroxycholecalciferol, to polar metabolites by druginduced liver microsomal enzymes.

PubMed Disclaimer

References

    1. J Pharmacol Exp Ther. 1966 Nov;154(2):310-8 - PubMed
    1. J Clin Invest. 1967 Jun;46(6):983-92 - PubMed
    1. J Lipid Res. 1966 Nov;7(6):739-44 - PubMed
    1. Endocrinology. 1967 Jan;80(1):135-40 - PubMed
    1. Pharmacol Rev. 1967 Sep;19(3):317-66 - PubMed

MeSH terms

Substances

LinkOut - more resources

Full text links
American Society for Clinical Investigation full text link American Society for Clinical Investigation Free PMC article
Cite
Send To

NCBI Literature Resources

MeSHPMCBookshelfDisclaimer

The PubMed wordmark and PubMed logo are registered trademarks of the U.S. Department of Health and Human Services (HHS). Unauthorized use of these marks is strictly prohibited.


[8]ページ先頭

©2009-2026 Movatter.jp