Continuous multiplexed phage genome editing using recombitrons
- PMID:39237706
- PMCID:PMC11880354 (available on)
- DOI: 10.1038/s41587-024-02370-5
Continuous multiplexed phage genome editing using recombitrons
Abstract
Bacteriophage genome editing can enhance the efficacy of phages to eliminate pathogenic bacteria in patients and in the environment. However, current methods for editing phage genomes require laborious screening, counterselection or in vitro construction of modified genomes. Here, we present a scalable approach that uses modified bacterial retrons called recombitrons to generate recombineering donor DNA paired with single-stranded binding and annealing proteins for integration into phage genomes. This system can efficiently create genome modifications in multiple phages without the need for counterselection. The approach also supports larger insertions and deletions, which can be combined with simultaneous counterselection for >99% efficiency. Moreover, we show that the process is continuous, with more edits accumulating the longer the phage is cultured with the host, and multiplexable. We install up to five distinct mutations on a single lambda phage genome without counterselection in only a few hours of hands-on time and identify a residue-level epistatic interaction in the T7 gp17 tail fiber.
© 2024. The Author(s), under exclusive licence to Springer Nature America, Inc.
Conflict of interest statement
Competing Interests
C.B.F., S.B.K., and S.L.S. are named inventors on a patent application related to the technologies described in this work.
Update of
- Continuous Multiplexed Phage Genome Editing Using Recombitrons.Fishman CB, Crawford KD, Bhattarai-Kline S, Zhang K, González-Delgado A, Shipman SL.Fishman CB, et al.bioRxiv [Preprint]. 2023 Mar 25:2023.03.24.534024. doi: 10.1101/2023.03.24.534024.bioRxiv. 2023.Update in:Nat Biotechnol. 2024 Sep 5. doi: 10.1038/s41587-024-02370-5.PMID:36993281Free PMC article.Updated.Preprint.
Similar articles
- Continuous Multiplexed Phage Genome Editing Using Recombitrons.Fishman CB, Crawford KD, Bhattarai-Kline S, Zhang K, González-Delgado A, Shipman SL.Fishman CB, et al.bioRxiv [Preprint]. 2023 Mar 25:2023.03.24.534024. doi: 10.1101/2023.03.24.534024.bioRxiv. 2023.Update in:Nat Biotechnol. 2024 Sep 5. doi: 10.1038/s41587-024-02370-5.PMID:36993281Free PMC article.Updated.Preprint.
- [Editing of Phage Genomes - Recombineering-Assisted SpCas9 Modification of Model Coliphages T7, T5, and T3].Isaev A, Andriianov A, Znobishcheva E, Zorin E, Morozova N, Severinov K.Isaev A, et al.Mol Biol (Mosk). 2022 Nov-Dec;56(6):883. doi: 10.31857/S002689842206009X.Mol Biol (Mosk). 2022.PMID:36475474Russian.
- Efficient and Scalable Precision Genome Editing inStaphylococcus aureus through Conditional Recombineering and CRISPR/Cas9-Mediated Counterselection.Penewit K, Holmes EA, McLean K, Ren M, Waalkes A, Salipante SJ.Penewit K, et al.mBio. 2018 Feb 20;9(1):e00067-18. doi: 10.1128/mBio.00067-18.mBio. 2018.PMID:29463653Free PMC article.
- Bacterial Recombineering: Genome Engineering via Phage-Based Homologous Recombination.Pines G, Freed EF, Winkler JD, Gill RT.Pines G, et al.ACS Synth Biol. 2015 Nov 20;4(11):1176-85. doi: 10.1021/acssynbio.5b00009. Epub 2015 Apr 27.ACS Synth Biol. 2015.PMID:25856528Review.
- Precise genome engineering in Pseudomonas using phage-encoded homologous recombination and the Cascade-Cas3 system.Zheng W, Xia Y, Wang X, Gao S, Zhou D, Ravichandran V, Jiang C, Tu Q, Yin Y, Zhang Y, Fu J, Li R, Yin J.Zheng W, et al.Nat Protoc. 2023 Sep;18(9):2642-2670. doi: 10.1038/s41596-023-00856-1. Epub 2023 Aug 25.Nat Protoc. 2023.PMID:37626246Review.
Cited by
- An experimental census of retrons for DNA production and genome editing.Khan AG, Rojas-Montero M, González-Delgado A, Lopez SC, Fang RF, Shipman SL.Khan AG, et al.bioRxiv [Preprint]. 2024 Jan 26:2024.01.25.577267. doi: 10.1101/2024.01.25.577267.bioRxiv. 2024.Update in:Nat Biotechnol. 2024 Sep 17. doi: 10.1038/s41587-024-02384-z.PMID:38328236Free PMC article.Updated.Preprint.
- An efficient, scarless, selection-free technology for phage engineering.Goren MG, Mahata T, Qimron U.Goren MG, et al.RNA Biol. 2023 Jan;20(1):830-835. doi: 10.1080/15476286.2023.2270344. Epub 2023 Oct 16.RNA Biol. 2023.PMID:37846029Free PMC article.
- Simultaneous multi-site editing of individual genomes using retron arrays.González-Delgado A, Lopez SC, Rojas-Montero M, Fishman CB, Shipman SL.González-Delgado A, et al.Nat Chem Biol. 2024 Nov;20(11):1482-1492. doi: 10.1038/s41589-024-01665-7. Epub 2024 Jul 9.Nat Chem Biol. 2024.PMID:38982310
- Simultaneous multi-site editing of individual genomes using retron arrays.González-Delgado A, Lopez SC, Rojas-Montero M, Fishman CB, Shipman SL.González-Delgado A, et al.bioRxiv [Preprint]. 2023 Jul 17:2023.07.17.549397. doi: 10.1101/2023.07.17.549397.bioRxiv. 2023.Update in:Nat Chem Biol. 2024 Nov;20(11):1482-1492. doi: 10.1038/s41589-024-01665-7.PMID:37503029Free PMC article.Updated.Preprint.
- High Throughput Variant Libraries and Machine Learning Yield Design Rules for Retron Gene Editors.Crawford KD, Khan AG, Lopez SC, Goodarzi H, Shipman SL.Crawford KD, et al.bioRxiv [Preprint]. 2024 Jul 9:2024.07.08.602561. doi: 10.1101/2024.07.08.602561.bioRxiv. 2024.Update in:Nucleic Acids Res. 2025 Jan 11;53(2):gkae1199. doi: 10.1093/nar/gkae1199.PMID:39026735Free PMC article.Updated.Preprint.
References
Related information
Grants and funding
- R21 EB031393/EB/NIBIB NIH HHS/United States
- MCB 2137692/National Science Foundation (NSF)
- 1DP2GM140917/U.S. Department of Health & Human Services | NIH | National Institute of General Medical Sciences (NIGMS)
- R21EB031393/U.S. Department of Health & Human Services | NIH | National Institute of Biomedical Imaging and Bioengineering (NIBIB)
- DP2 GM140917/GM/NIGMS NIH HHS/United States
LinkOut - more resources
Full Text Sources
Research Materials