Movatterモバイル変換


[0]ホーム

URL:


Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
Thehttps:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

NIH NLM Logo
Log inShow account info
Access keysNCBI HomepageMyNCBI HomepageMain ContentMain Navigation
pubmed logo
Advanced Clipboard
User Guide

Full text links

Dove Medical Press full text link Dove Medical Press Free PMC article
Full text links

Actions

.2024 Apr 9:17:349-359.
doi: 10.2147/JAA.S448600. eCollection 2024.

Short-Term Nitrogen Dioxide Exposure and Emergency Hospital Admissions for Asthma in Children: A Case-Crossover Analysis in England

Affiliations

Short-Term Nitrogen Dioxide Exposure and Emergency Hospital Admissions for Asthma in Children: A Case-Crossover Analysis in England

Weiyi Wang et al. J Asthma Allergy..

Abstract

Background: There is an increasing body of evidence associating short-term ambient nitrogen dioxide (NO2) exposure with asthma-related hospital admissions in children. However, most studies have relied on temporally resolved exposure information, potentially ignoring the spatial variability of NO2. We aimed to investigate how daily NO2 estimates from a highly resolved spatio-temporal model are associated with the risk of emergency hospital admission for asthma in children in England.

Methods: We conducted a time-stratified case-crossover study including 111,766 emergency hospital admissions for asthma in children (aged 0-14 years) between 1st January 2011 and 31st December 2015 in England. Daily NO2 levels were predicted at the patients' place of residence using spatio-temporal models by combining land use data and chemical transport model estimates. Conditional logistic regression models were used to obtain the odds ratios (OR) and confidence intervals (CI) after adjusting for temperature, relative humidity, bank holidays, and influenza rates. The effect modifications by age, sex, season, area-level income deprivation, and region were explored in stratified analyses.

Results: For each 10 µg/m³ increase in NO2 exposure, we observed an 8% increase in asthma-related emergency admissions using a five-day moving NO2 average (mean lag 0-4) (OR 1.08, 95% CI 1.06-1.10). In the stratified analysis, we found larger effect sizes for male (OR 1.10, 95% CI 1.07-1.12) and during the cold season (OR 1.10, 95% CI 1.08-1.12). The effect estimates varied slightly by age group, area-level income deprivation, and region.

Significance: Short-term exposure to NO2 was significantly associated with an increased risk of asthma emergency admissions among children in England. Future guidance and policies need to consider reflecting certain proven modifications, such as using season-specific countermeasures for air pollution control, to protect the at-risk population.

Keywords: asthma; case-crossover; children; hospital admissions; nitrogen dioxide.

© 2024 Wang et al.

PubMed Disclaimer

Conflict of interest statement

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Figures

Figure 1
Figure 1
Flow chart of case selection.
Figure 2
Figure 2
Daily average count of asthma-related emergency hospital admissions in children in England by month, averaged across 2011–2015.
Figure 3
Figure 3
Odds ratios and 95% confidence intervals for asthma-related emergency hospital admissions in children associated per 10 μg/m3 increase in NO2 (lag 0–4), including overall effect size and stratification by age, sex, season, income deprivation quintile, and region.P-value for difference was calculated using a Wald test to compare the difference between subgroups.
See this image and copyright information in PMC

References

    1. Zheng X, Orellano P, Lin H, Jiang M, Guan W. Short-term exposure to ozone, nitrogen dioxide, and sulphur dioxide and emergency department visits and hospital admissions due to asthma: a systematic review and meta-analysis. Environ Int. 2021;150:106435. doi:10.1016/j.envint.2021.106435 - DOI - PubMed
    1. Strickland MJ, Darrow LA, Klein M, et al. Short-term associations between ambient air pollutants and pediatric asthma emergency department visits. Am J Respir Crit Care Med. 2010;182:307–316. doi:10.1164/rccm.200908-1201OC - DOI - PMC - PubMed
    1. Peters A, Dockery DW, Heinrich J, Wichmann HE. Short-term effects of particulate air pollution on respiratory morbidity in asthmatic children. Eur Respir J. 1997;10(4):872–879. doi:10.1183/09031936.97.10040872 - DOI - PubMed
    1. Ding L, Zhu D, Peng D, Zhao Y. Air pollution and asthma attacks in children: a case–crossover analysis in the city of Chongqing, China. Environ Pollut. 2017;220:348–353. doi:10.1016/j.envpol.2016.09.070 - DOI - PubMed
    1. Mann JK, Balmes JR, Bruckner TA, et al. Short-term effects of air pollution on wheeze in asthmatic children in Fresno, California. Environ Health Perspect. 2010;118(10):1497–1502. doi:10.1289/EHP.0901292 - DOI - PMC - PubMed

LinkOut - more resources

Full text links
Dove Medical Press full text link Dove Medical Press Free PMC article
Cite
Send To

NCBI Literature Resources

MeSHPMCBookshelfDisclaimer

The PubMed wordmark and PubMed logo are registered trademarks of the U.S. Department of Health and Human Services (HHS). Unauthorized use of these marks is strictly prohibited.


[8]ページ先頭

©2009-2025 Movatter.jp