Major Revisions in Pancrustacean Phylogeny and Evidence of Sensitivity to Taxon Sampling
- PMID:37552897
- PMCID: PMC10414812
- DOI: 10.1093/molbev/msad175
Major Revisions in Pancrustacean Phylogeny and Evidence of Sensitivity to Taxon Sampling
Abstract
The clade Pancrustacea, comprising crustaceans and hexapods, is the most diverse group of animals on earth, containing over 80% of animal species and half of animal biomass. It has been the subject of several recent phylogenomic analyses, yet relationships within Pancrustacea show a notable lack of stability. Here, the phylogeny is estimated with expanded taxon sampling, particularly of malacostracans. We show small changes in taxon sampling have large impacts on phylogenetic estimation. By analyzing identical orthologs between two slightly different taxon sets, we show that the differences in the resulting topologies are due primarily to the effects of taxon sampling on the phylogenetic reconstruction method. We compare trees resulting from our phylogenomic analyses with those from the literature to explore the large tree space of pancrustacean phylogenetic hypotheses and find that statistical topology tests reject the previously published trees in favor of the maximum likelihood trees produced here. Our results reject several clades including Caridoida, Eucarida, Multicrustacea, Vericrustacea, and Syncarida. Notably, we find Copepoda nested within Allotriocarida with high support and recover a novel relationship between decapods, euphausiids, and syncarids that we refer to as the Syneucarida. With denser taxon sampling, we find Stomatopoda sister to this latter clade, which we collectively name Stomatocarida, dividing Malacostraca into three clades: Leptostraca, Peracarida, and Stomatocarida. A new Bayesian divergence time estimation is conducted using 13 vetted fossils. We review our results in the context of other pancrustacean phylogenetic hypotheses and highlight 15 key taxa to sample in future studies.
Keywords: Crustacea; Malacostraca; Pancrustacea; copepod; evolution; phylogeny.
Published by Oxford University Press on behalf of Society for Molecular Biology and Evolution 2023.
Figures




Similar articles
- Phylotranscriptomics to bring the understudied into the fold: monophyletic ostracoda, fossil placement, and pancrustacean phylogeny.Oakley TH, Wolfe JM, Lindgren AR, Zaharoff AK.Oakley TH, et al.Mol Biol Evol. 2013 Jan;30(1):215-33. doi: 10.1093/molbev/mss216. Epub 2012 Sep 12.Mol Biol Evol. 2013.PMID:22977117
- Pancrustacean Evolution Illuminated by Taxon-Rich Genomic-Scale Data Sets with an Expanded Remipede Sampling.Lozano-Fernandez J, Giacomelli M, Fleming JF, Chen A, Vinther J, Thomsen PF, Glenner H, Palero F, Legg DA, Iliffe TM, Pisani D, Olesen J.Lozano-Fernandez J, et al.Genome Biol Evol. 2019 Aug 1;11(8):2055-2070. doi: 10.1093/gbe/evz097.Genome Biol Evol. 2019.PMID:31270537Free PMC article.
- Pancrustacean phylogeny: hexapods are terrestrial crustaceans and maxillopods are not monophyletic.Regier JC, Shultz JW, Kambic RE.Regier JC, et al.Proc Biol Sci. 2005 Feb 22;272(1561):395-401. doi: 10.1098/rspb.2004.2917.Proc Biol Sci. 2005.PMID:15734694Free PMC article.
- Convergent evolution of optic lobe neuropil in Pancrustacea.Strausfeld NJ, Olea-Rowe B.Strausfeld NJ, et al.Arthropod Struct Dev. 2021 Mar;61:101040. doi: 10.1016/j.asd.2021.101040. Epub 2021 Mar 9.Arthropod Struct Dev. 2021.PMID:33706077Review.
- The Dynamic Evolutionary History of Pancrustacean Eyes and Opsins.Henze MJ, Oakley TH.Henze MJ, et al.Integr Comp Biol. 2015 Nov;55(5):830-42. doi: 10.1093/icb/icv100. Epub 2015 Aug 28.Integr Comp Biol. 2015.PMID:26319405Review.
Cited by
- Phylogenetic and transcriptomic characterization of insulin and growth factor receptor tyrosine kinases in crustaceans.Flores KA, Pérez-Moreno JL, Durica DS, Mykles DL.Flores KA, et al.Front Endocrinol (Lausanne). 2024 Apr 4;15:1379231. doi: 10.3389/fendo.2024.1379231. eCollection 2024.Front Endocrinol (Lausanne). 2024.PMID:38638139Free PMC article.
- Revisiting the four Hexapoda classes: Protura as the sister group to all other hexapods.Du S, Tihelka E, Yu D, Chen WJ, Bu Y, Cai C, Engel MS, Luan YX, Zhang F.Du S, et al.Proc Natl Acad Sci U S A. 2024 Sep 24;121(39):e2408775121. doi: 10.1073/pnas.2408775121. Epub 2024 Sep 19.Proc Natl Acad Sci U S A. 2024.PMID:39298489Free PMC article.
- Arthropod Phylotranscriptomics With a Special Focus on the Basal Phylogeny of the Myriapoda.Su ZH, Sasaki A, Minami H, Ozaki K.Su ZH, et al.Genome Biol Evol. 2024 Sep 3;16(9):evae189. doi: 10.1093/gbe/evae189.Genome Biol Evol. 2024.PMID:39219333Free PMC article.
- Phylogenomics supports a single origin of terrestriality in isopods.Thomas Thorpe JA.Thomas Thorpe JA.Proc Biol Sci. 2024 Oct;291(2033):20241042. doi: 10.1098/rspb.2024.1042. Epub 2024 Oct 30.Proc Biol Sci. 2024.PMID:39471855Free PMC article.
- Diversely evolved xibalbin variants from remipede venom inhibit potassium channels and activate PKA-II and Erk1/2 signaling.Pinheiro-Junior EL, Alirahimi E, Peigneur S, Isensee J, Schiffmann S, Erkoc P, Fürst R, Vilcinskas A, Sennoner T, Koludarov I, Hempel BF, Tytgat J, Hucho T, von Reumont BM.Pinheiro-Junior EL, et al.BMC Biol. 2024 Jul 29;22(1):164. doi: 10.1186/s12915-024-01955-5.BMC Biol. 2024.PMID:39075558Free PMC article.
References
- Altschul S, Gish W, Miller W, Myers EW, Lipman DJ. 1990. Basic local alignment search tool. J Mol Biol. 215:403–410. - PubMed
Publication types
MeSH terms
Associated data
Related information
LinkOut - more resources
Full Text Sources
Other Literature Sources