Rapid Chemical Ligation of DNA andAcyclic Threoninol Nucleic Acid (a TNA) for Effective Nonenzymatic Primer Extension
- PMID:37466125
- PMCID: PMC10436273
- DOI: 10.1021/jacs.3c04979
Rapid Chemical Ligation of DNA andAcyclic Threoninol Nucleic Acid (a TNA) for Effective Nonenzymatic Primer Extension
Abstract
Previously, nonenzymatic primer extension reaction ofacyclic l-threoninol nucleic acid (L-aTNA) was achieved in the presence ofN-cyanoimidazole (CNIm) and Mn2+; however, the reaction conditions were not optimized and a mechanistic insight was not sufficient. Herein, we report investigation of the kinetics and reaction mechanism of the chemical ligation of L-aTNA to L-aTNA and of DNA to DNA. We found that Cd2+, Ni2+, and Co2+ accelerated ligation of both L-aTNA and DNA and that the rate-determining step was activation of the phosphate group. The activation was enhanced by duplex formation between a phosphorylated L-aTNA fragment and template, resulting in unexpectedly more effective L-aTNA ligation than DNA ligation. Under optimized conditions, an 8-mer L-aTNA primer could be elongated by ligation to L-aTNA trimers to produce a 29-mer full-length oligomer with 60% yield within 2 h at 4 °C. This highly effective chemical ligation system will allow construction of artificial genomes, robust DNA nanostructures, and xeno nucleic acids for use in selection methods. Our findings also shed light on the possible pre-RNA world.
Conflict of interest statement
The authors declare no competing financial interest.
Figures





Similar articles
- Nonenzymatic polymerase-like template-directed synthesis of acyclic L-threoninol nucleic acid.Murayama K, Okita H, Kuriki T, Asanuma H.Murayama K, et al.Nat Commun. 2021 Feb 5;12(1):804. doi: 10.1038/s41467-021-21128-0.Nat Commun. 2021.PMID:33547322Free PMC article.
- Highly stable duplex formation by artificial nucleic acids acyclic threoninol nucleic acid (aTNA) and serinol nucleic acid (SNA) with acyclic scaffolds.Murayama K, Tanaka Y, Toda T, Kashida H, Asanuma H.Murayama K, et al.Chemistry. 2013 Oct 11;19(42):14151-8. doi: 10.1002/chem.201301578. Epub 2013 Aug 23.Chemistry. 2013.PMID:24038212
- Methyl group configuration on acyclic threoninol nucleic acids (aTNAs) impacts supramolecular properties.Murayama K, Kashida H, Asanuma H.Murayama K, et al.Org Biomol Chem. 2022 May 26;20(20):4115-4122. doi: 10.1039/d2ob00266c.Org Biomol Chem. 2022.PMID:35274662
- Xeno nucleic acids (XNAs) having non-ribose scaffolds with unique supramolecular properties.Asanuma H, Kamiya Y, Kashida H, Murayama K.Asanuma H, et al.Chem Commun (Camb). 2022 Mar 24;58(25):3993-4004. doi: 10.1039/d1cc05868a.Chem Commun (Camb). 2022.PMID:35107445Review.
- Design and Hybridization Properties of Acyclic Xeno Nucleic Acid Oligomers.Murayama K, Asanuma H.Murayama K, et al.Chembiochem. 2021 Aug 3;22(15):2507-2515. doi: 10.1002/cbic.202100184. Epub 2021 Jun 2.Chembiochem. 2021.PMID:33998765Review.
Cited by
- Manganese(II) promotes prebiotically plausible non-enzymatic RNA ligation reactions.Liu Z, Jiang CZ, Bond AD, Tosca NJ, Sutherland JD.Liu Z, et al.Chem Commun (Camb). 2024 Jun 20;60(51):6528-6531. doi: 10.1039/d4cc01086h.Chem Commun (Camb). 2024.PMID:38836405Free PMC article.
References
- Gilbert W. Origin of Life: The RNA World. Nature 1986, 319, 618–618. 10.1038/319618a0. - DOI
- Inoue T.; Orgel L. E. Substituent Control of the Poly(C)-Directed Oligomerization of Guanosine 5’-Phosphoroimidazolide. J. Am. Chem. Soc. 1981, 103, 7666–7667. 10.1021/ja00415a051. - DOI
- Tam C. P.; Zhou L.; Fahrenbach A. C.; Zhang W.; Walton T.; Szostak J. W. Synthesis of a Nonhydrolyzable Nucleotide Phosphoroimidazolide Analogue that Catalyzes Nonenzymatic RNA Primer Extension. J. Am. Chem. Soc. 2018, 140, 783–792. 10.1021/jacs.7b11623. - DOI - PMC - PubMed
Publication types
MeSH terms
Substances
Related information
LinkOut - more resources
Full Text Sources
Miscellaneous