Movatterモバイル変換


[0]ホーム

URL:


Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
Thehttps:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

NIH NLM Logo
Log inShow account info
Access keysNCBI HomepageMyNCBI HomepageMain ContentMain Navigation
pubmed logo
Advanced Clipboard
User Guide

Full text links

Free PMC article
Full text links

Actions

Share

.2023 Jun 12;5(1):obad020.
doi: 10.1093/iob/obad020. eCollection 2023.

Post-Diapause DNA Replication during Oogenesis in a Capital-Breeding Copepod

Affiliations

Post-Diapause DNA Replication during Oogenesis in a Capital-Breeding Copepod

K J Monell et al. Integr Org Biol..

Abstract
in English, Italian, Portuguese, German

In high-latitude environments where seasonal changes include periods of harsh conditions, many arthropods enter diapause, a period of dormancy that is hormonally regulated. Diapause is characterized by very low metabolism, resistance to environmental stress, and developmental arrest. It allows an organism to optimize the timing of reproduction by synchronizing offspring growth and development with periods of high food availability. In species that enter dormancy as pre-adults or adults, termination of diapause is marked by the resumption of physiological processes, an increase in metabolic rates and once transitioned into adulthood for females, the initiation of oogenesis. In many cases, individuals start feeding again and newly acquired resources become available to fuel egg production. However, in the subarctic capital-breeding copepodNeocalanus flemingeri, feeding is decoupled from oogenesis. Thus, optimizing reproduction limited by fixed resources such that all eggs are of high quality and fully-provisioned, requires regulation of the number of oocytes. However, it is unknown if and how this copepod limits oocyte formation. In this study, the phase in oocyte production by post-diapause females that involved DNA replication in the ovary and oviducts was examined using incubation in 5-Ethynyl-2'-deoxyuridine (EdU). Both oogonia and oocytes incorporated EdU, with the number of EdU-labeled cells peaking at 72 hours following diapause termination. Cell labeling with EdU remained high for two weeks, decreasing thereafter with no labeling detected by four weeks post diapause, and three to four weeks before spawning of the first clutch of eggs. The results suggest that oogenesis is sequential inN. flemingeri with formation of new oocytes starting within 24 hours of diapause termination and limited to the first few weeks. Lipid consumption during diapause was minimal and relatively modest initially. This early phase in the reproductive program precedes mid-oogenesis and vitellogenesis 2, when oocytes increase in size and accumulate yolk and lipid reserves. By limiting DNA replication to the initial phase, the females effectively separate oocyte production from oocyte provisioning. A sequential oogenesis is unlike the income-breeder strategy of most copepods in which oocytes at all stages of maturation are found concurrently in the reproductive structures.

Negli ambienti ad alta latitudine, dove i cambiamenti stagionali includono periodi di condizioni difficili, molti artropodi entrano in diapausa, un periodo di dormienza regolato da ormoni. La diapausa è caratterizzata da un abbassamento del metabolismo, un aumento della resistenza allo stress ambientale e da un arresto dello sviluppo. La diapausa permette ad un organismo di ottimizzare i tempi della riproduzione sincronizzando la crescita e lo sviluppo della prole con periodi di elevata disponibilità di cibo. Nelle specie che entrano in dormienza come preadulti o adulti, la fine della diapausa è caratterizzata dalla ripresa dei processi fisiologici, da un aumento dei tassi metabolici e, una volta passata all“età adulta per le femmine, dall”inizio dell“oogenesi. In molti casi, gli individui ricominciano a nutrirsi e le risorse appena acquisite diventano disponibili per supportare la produzione di uova. Nell”oceano subartico, l“alimentazione del copepodeNeocalanus flemingeri è dissociata dall”oogenesi e la riproduzione è limitata dalle risorse fisse ottenute durante la pre-diapausa. Tuttavia, non è noto come questo copepode regoli la formazione di ovociti per garantire che tutte le uova siano di alta qualità e ben fornite. In questo studio, la fase nella produzione di ovociti da parte di femmine post-diapausa che coinvolge la replicazione del DNA nell“ovaio e negli ovidotti, è stata esaminata utilizzando l”incubazione in 5-Ethynyl-2′-deoxyuridine (EdU). Sia l“oogonia che gli ovociti incorporavano EdU, con il numero di cellule colorate con EdU che raggiungeva il picco a 72 ore dopo la fine della diapausa. La colorazione delle cellule con EdU è rimasta elevata per due settimane, diminuendo successivamente senza alcuna colorazione rilevata entro quattro settimane dopo la diapausa e da tre a quattro settimane prima della deposizione del primo gruppo di uova. I risultati suggeriscono che l”oogenesi è sequenziale inN. flemingeri con la formazione di nuovi ovociti che iniziano entro 24 ore dalla fine della diapausa e sono limitati alle prime settimane. Il consumo di lipidi durante la diapausa era inizialmente minimo e relativamente modesto. Questa prima fase del programma riproduttivo precede la metà dell“oogenesi e la vitellogenesi 2, quando gli ovociti aumentano di dimensioni e accumulano le riserve vitelline e lipidi. Limitando la replicazione del DNA alla fase iniziale, le femmine separano efficacemente la produzione di ovociti dall”approvvigionamento di ovociti. Un'oogenesi sequenziale è diversa dalla strategia di riproduzione della maggior parte dei copepodi che mantengono contemporaneamente gli ovociti in tutte le fasi di maturazione nelle strutture riproduttive.

Em ambientes de alta latitude, onde as mudanças sazonais incluem períodos de condições adversas, muitos artrópodes entram em diapausa, um período de dormência regulado por hormônios. A diapausa é caracterizada por metabolismo muito baixo, resistência ao estresse ambiental e interrupção do desenvolvimento. Ele permite que um organismo otimize a reprodução sincronizando o crescimento e desenvolvimento da prole com períodos de alta disponibilidade de alimentos. Em espécies que entram em dormência como pré-adultos ou adultos, o término da diapausa é marcado pela retomada dos processos fisiológicos, um aumento nas taxas metabólicas e o início da oogênese. Em muitos casos, os indivíduos começam a se alimentar novamente e os recursos recém-adquiridos ficam disponíveis para abastecer a produção de ovos. No oceano subártico, a alimentação do copépodeNeocalanus flemingeri é dissociada da oogênese e a reprodução é limitada por recursos fixos obtidos durante a pré-diapausa. No entanto, não se sabe como este copépode regula a formação de ovócitos para garantir que todos os óvulos sejam de alta qualidade e bem fornecidos. Neste estudo, a fase de produção de oócitos por fêmeas pós-diapausa foi examinada usando incubação em 5-Etinil-2′-desoxiuridina (EdU) para caraterizar a replicação do DNA no ovário e nos ovidutos. Tanto as oogônias quanto os oócitos incorporaram EdU, com o número de células marcadas atingindo o pico 72 horas após o término da diapausa. A marcação das células com EdU permaneceu alta por duas semanas, diminuindo na terceira e cessando na quarta semana. Desova da primeira ninhada de ovos ocorre três a quatro semanas depois. Os resultados sugerem que a oogênese é sequencial emN. flemingeri com a formação de novos oócitos começando dentro de 24 horas após o término da diapausa e limitado às primeiras semanas. O consumo de lipídios durante a diapausa foi mínima e relativamente modesto inicialmente. Essa fase inicial do programa reprodutivo precede a vitelogênese 2, quando os ovócitos aumentam de tamanho e acumulam reservas de vitelo e lipídios. Ao limitar a replicação do DNA à fase inicial, as fêmeas efetivamente separam a produção de oócitos do seu fornecimento. Uma oogênese sequencial é diferente da estratégia de reprodução da maioria dos copépodes que mantem oócitos em todos estágios de maturação nas estruturas reprodutivas.

In Umgebungen in denen der jahreszeitliche Zyklus extreme Bedingungen einschließen, treten viele Arthropoden in die Diapause ein, eine Ruhephase, die hormonell reguliert wird. Die Diapause ist durch einen sehr niedrigen Metabolismus, Widerstandsfähigkeit gegenüber Umweltstress und Entwicklungsstillstand gekennzeichnet. Es ermöglicht einem Organismus, den Zeitpunkt der Fortpflanzung zu optimieren, indem das Wachstum und die Entwicklung der Nachkommen mit Zeiten hoher Nahrungsverfügbarkeit synchronisiert werden. Die Wiederaufnahme physiologischer Prozesse, einen Anstieg des Metabolismus und der Beginn der Oogenese charakterisiert die Beendigung der Diapause bei Arten, die im Vor- oder Erwachsenenalter in den Ruhezustand eintreten. Die Eierproduktion bei vielen Tieren erfordert neue Ressourcen, allerdings gilt dies nicht für alle. Nahrungsaufnahme des CopepodenNeocalanus flemingeri ist von der Oogenese entkoppelt, und Reproduktion ist begrenzt durch feste Ressourcen, die während der Prä-Diapause gewonnen wurden. Es ist jedoch unbekannt, ob und wie dieser Ruderfußkrebs die Eizellenbildung einschränkt damit all Eizellen von hoher Qualität und vollständig versorgt sind. In dieser Studie wurde die Phase der Eizellenproduktion bei Weibchen nach der Diapause, die DNA-Replikation im Eierstock und in den Eileitern beinhaltete, durch Inkubation in 5-Ethinyl-2′-desoxyuridin (EdU) untersucht. Sowohl Oogonien als auch Eizellen bauten EdU ein, wobei die Anzahl der EdU-markierten Zellen 72 Stunden nach Beendigung der Diapause ihren Höhepunkt erreichte. Die Markierung der Zellen mit EdU blieb zwei Wochen lang hoch und nahm danach ab, und beendete vier Wochen nach der Diapause. Laichen des ersten Geleges folgt drei bis vier Wochen später. Die Ergebnisse deuten darauf hin, dass die Oogenese beiN. flemingeri sequenziell verläuft und die Bildung neuer Eizellen innerhalb von 24 Stunden nach Beendigung der Diapause einsetzt und auf die ersten paar Wochen beschränkt ist. Der Lipidverbrauch während der Diapause war minimal und anfangs relativ bescheiden. Diese frühe Phase des Fortpflanzungsprogramms geht der mittleren Oogenese und Vitellogenese 2 voraus, wenn die Eizellen an Größe zunehmen und Dotter- und Lipidreserven ansammeln. Durch die Beschränkung der DNA-Replikation auf die Anfangsphase trennen die Weibchen effektiv die Eizellenproduktion von der Eizellenversorgung. Eine sequentielle Oogenese unterscheidet sich von der Einkommensbrüterstrategie der meisten Copepoden, bei denen Eizellen in allen Reifungsstadien gleichzeitig in den Fortpflanzungsstrukturen gefunden werden.

© The Author(s) 2023. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology.

PubMed Disclaimer

Conflict of interest statement

None declared.

Figures

Fig. 1
Fig. 1
Diagram ofNeocalanus flemingeri life cycle in the Gulf of Alaska with images showing morphological changes as oogenesis progresses. (a) Diagrammatic representation of the seasonal progression of life stages and vertical location ofN. flemingeri between late April and the following February. Thex-axis shows time in months, and depth is indicated along they-axis (depths are not to scale). Presence and location of late copepodites (stage CV), adults females (non-feeding), and eggs (embryos) are shown. Yellow arrows indicate known timing of events; white arrows provide estimates for life-cycle transitions. Black arrows mark when feeding individuals transition to non-feeding. The time delay between initiation of oogenesis and spawning is indicated with the double-headed yellow arrow. Life cycle and timing of transitions based on descriptions in Miller and Clemons (1988), Coyle and Pinchuk (2003), and Liu and Hopcroft (2006). Progression from diapause termination to spawning based on Roncalli et al. (2018).(b) Light microscope images ofN. flemingeri females highlighting morphological changes to the ovary as oogenesis progresses. Arrows point to the ovary. Scale bars are 1000 µm.
Fig. 2
Fig. 2
Summary ofN. flemingeri experiments completed in the summer (PWS2, June collection) and fall (PWS2 and Pleiades, September collections) of 2019 with light micrographs of females showing image analysis. (a) Start time and duration of EdU incubations are listed in first two columns. Experimental start time is given relative to collection, starting within two hours after net retrieval. Values indicate number of individuals incubated in EdU and imaged prior to preservation (EdU columns), or number of individuals that were just imaged through a light microscope (light imaging only columns). In a few cases, females incubated in EdU could not be light imaged before preservation and these are indicated by an asterisk (*).(b) Female collected from PWS2 in Prince William Sound, Alaska, prosome length (red dashed line), lipid sac area (blue dashed line contour), and prosome area (green dashed line contour) were measured using ImageJ. Lipid sac and prosome area were used to compute total lipid content in mg and % lipid fullness (Vogedes et al., 2010). Pictured female: prosome length = 4.0 mm, prosome area = 4 mm2, lipid area = 2 mm2, and lipid fullness = 50%.(c) Female collected from Pleiades; arrows point to criteria used to select females for experiments. Pictured female: prosome length = 3.8 mm, lipid fullness = 43%. Images were taken three days after collection. Microscope magnification: × 32, scale bars: 1000 µm.
Fig. 3
Fig. 3
(A) Scatterplot of prosome length with lipid content from females imaged in the first 36 hours after collection, PWS2/June (grey triangles, n = 40) and Pleiades/September (black circles, n = 13). (B) Scatterplot of female lipid fullness versus days after collection for the duration of the two experiments, PWS2/June (grey triangles, n = 168) and Pleiades/September (black circles, n = 36). (A) Female prosome length was measured directly from light microscope images and rounded to the nearest 0.1 mm. Lipid content was calculated from measured lipid sac area using Vogedes et al. (2010) equation: TL = 0.197A1.38 where A is measured lipid sac area and TL is total lipid content in mg. Separate regressions were computed for the two experimental datasets.(B) Lipid fullness is calculated as percentage using the equation, lipid fullness (%) = formula image × 100). Lipid sac and prosome areas were also measured directly from light microscope images. For both collections female lipid fullness decreased with time as shown by the fitted regression lines, which was significant atp < 0.001 for PWS2/June andp < 0.01 for Pleiades/September.
Fig. 4
Fig. 4
Maximum Intensity Projections (MIP) of ovaries of females incubated in EdU showing a time series from immediately after collection to four weeks post-collection. (a) Modified diagram of a section through thorax ofC. finmarchicus showing ovary and oviducts from Hilton (1931). Arrows point to locations of DNA replication; mitotically dividing oogonia (m: multiplication zone), and oocytes beginning prophase of meiosis 1 (s: synapsis zone).(b-g) Images were created using a MIP of merged confocal z-stacks where the brightest voxels over a specified depth are consolidated into one image. All females were collected from the PWS2 sampling site, except for female shown ind. Red: EdU-labeled cells, blue: DAPI-labeled cells. In images, cephalosome is to the left; urosome is to the right. White outlines show ovary; ov: ovary, od: oviduct.(b) Female was incubated in EdU for three hours directly after collection; Image is a 75 µm projection, number of dividing cells = 0. Arrows point to the approximate locations of the multiplication/germinative zone (oogonia) (right arrows) and the synapsis zone (oocytes) (left arrows).(c) Female was incubated in EdU for 24 hours directly after collection in June. Image is a 104 µm projection, number of EdU-labeled cells = 67.(d) Female was incubated in EdU for 24 hours directly after collection from in September. Image is a 53 µm projection, number of EdU-labeled cells = 28.(e) Female was incubated in EdU for 24 hours at three days after net collection. Image is a 63 µm projection; number of EdU-labeled cells = 295. **: image doubled due to tile merge artifact.(f) Female was incubated in EdU for 24 hours at three weeks after net collection. Image is a 36 µm projection; number of EdU-labeled cells = 105.(g) Female was incubated in EdU for 24 hours at four weeks after collection. Image is a 10 µm projection; number of EdU-labeled cells = 0. Dotted line indicates shape of ovary not viewable in MIP image. Images were taken at ×20 magnification, scale bars are 100 µm.
Fig. 5
Fig. 5
Description of EdU incorporation into cells within reproductive structures at different times post-collection. (a) Each data point represents mean number of EdU-labeled cells in the ovary and oviducts averaged across two to six females for each time point. EdU-labeled cells were counted using confocal z-stacks. Error bars are standard deviations.(b) Each data point represents normalized EdU-labeled cells computed as the mean number of EdU-labeled cells at a time point divided by that experiment's mean number of cell replications at its peak time point (PWS2/June: 72 hours, 239 cells, dashed line; Pleiades/September: 14 days, 179 cells, solid line). Note difference in x-axis between (a) and (b); (b) only shows time points shared between late June and September, due to this the time points: 1.5, 7, 28, and 32 days are not graphed.(a, b) September data (“Pleiades”) also include females collected at the Pleiades, and one set collected at PWS2 (Figure 2).(c) Diagram summarizing pattern of EdU incorporation within the ovary ofN. flemingeri post-collection with transitions noted in time bar along bottom.
Fig. 6
Fig. 6
Confocal images of oocytes with DAPI labeling (green) in oviducts four weeks post collection (PWS2/June). Green false color used to highlight details.(a) Oocytes with condensed chromatin in the nucleus and the presence of a large nucleolus; nu: nucleolus, n: nucleus, arrow: cell boundary.(b) Oocytes lined in paired oviducts located between arrows. Arrows point to cellular walls of one of the paired oviducts. Images were taken at × 63 magnification, scale bars are 10 µm.
See this image and copyright information in PMC

Similar articles

See all similar articles

References

    1. Baumgartner MF, Tarrant AM. 2017. The physiology and ecology of diapause in marine copepods. Ann Rev Mar Sci. 9:387–411. - PubMed
    1. Beltz BS, Zhang Y, Benton JL, Sandeman DC. 2011. Adult neurogenesis in the decapod crustacean brain: a hematopoietic connection? Eur J Neurosci 34:870–883. - PMC - PubMed
    1. Benton JL, Kery R, Li J, Noonin C, Söderhäll I, Beltz BS. 2014. Cells from the immune system generate adult-born neurons in crayfish. Dev Cell 30:322–333. - PubMed
    1. Blades-Eckelbarger PI, Youngbluth MJ. 1984. The ultrastructure of oogenesis and yolk formation in Labidocera aestiva (Copepoda: Calanoida). J Morphol 179:33–46. - PubMed
    1. Bonnet D, Richardson A, Harris R, Hirst A, Beaugrand G, Edwards M, Ceballos S, Diekman R, López-Urrutia A, Valdes L. 2005. An overview of Calanus helgolandicus ecology in European waters. Prog Oceanogr 65:1–53.

Related information

Grants and funding

LinkOut - more resources

Full text links
Free PMC article
Cite
Send To

NCBI Literature Resources

MeSHPMCBookshelfDisclaimer

The PubMed wordmark and PubMed logo are registered trademarks of the U.S. Department of Health and Human Services (HHS). Unauthorized use of these marks is strictly prohibited.


[8]ページ先頭

©2009-2025 Movatter.jp