Movatterモバイル変換


[0]ホーム

URL:


Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
Thehttps:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

NIH NLM Logo
Log inShow account info
Access keysNCBI HomepageMyNCBI HomepageMain ContentMain Navigation
pubmed logo
Advanced Clipboard
User Guide

Full text links

MDPI full text link MDPI Free PMC article
Full text links

Actions

Review
.2023 May 16;24(10):8811.
doi: 10.3390/ijms24108811.

The Function of MondoA and ChREBP Nutrient-Sensing Factors in Metabolic Disease

Affiliations
Review

The Function of MondoA and ChREBP Nutrient-Sensing Factors in Metabolic Disease

Byungyong Ahn. Int J Mol Sci..

Abstract

Obesity is a major global public health concern associated with an increased risk of many health problems, including type 2 diabetes, heart disease, stroke, and some types of cancer. Obesity is also a critical factor in the development of insulin resistance and type 2 diabetes. Insulin resistance is associated with metabolic inflexibility, which interferes with the body's ability to switch from free fatty acids to carbohydrate substrates, as well as with the ectopic accumulation of triglycerides in non-adipose tissue, such as that of skeletal muscle, the liver, heart, and pancreas. Recent studies have demonstrated that MondoA (MLX-interacting protein or MLXIP) and the carbohydrate response element-binding protein (ChREBP, also known as MLXIPL and MondoB) play crucial roles in the regulation of nutrient metabolism and energy homeostasis in the body. This review summarizes recent advances in elucidating the function of MondoA and ChREBP in insulin resistance and related pathological conditions. This review provides an overview of the mechanisms by which MondoA and ChREBP transcription factors regulate glucose and lipid metabolism in metabolically active organs. Understanding the underlying mechanism of MondoA and ChREBP in insulin resistance and obesity can foster the development of new therapeutic strategies for treating metabolic diseases.

Keywords: ChREBP; MondoA; diabetes; insulin resistance; metabolic diseases; obesity.

PubMed Disclaimer

Conflict of interest statement

The author declares no conflict of interest.

Figures

Figure 1
Figure 1
Gene expression levels of MLXIP and MLXIPL in different tissues. The tissue expression pattern of (A) MLXIP (https://gtexportal.org/home/gene/MLXIP (accessed on 12 May 2023)) and (B) MLXIPL (https://gtexportal.org/home/gene/MLXIPL (accessed on 12 May 2023)) are derived from GTEx Portal and presented with metabolic organs.
Figure 2
Figure 2
Regulation of MondoA and ChREBP activity by nutrients and post−translational modification (PTM). (A) MondoA transcriptional activity is elevated by glucose−6−phosphate (G6P), fructose-2,6−bisphosphate, non-glucose hexoses (allose, 3−O−methylglucose, and glucosamine), cellular acidosis, adenine nucleotides, and adenine−containing molecules, and is inhibited by glutamine and SBI−477/993. (B) ChREBP transcriptional activity is increased by G6P, F2,6BP, and xylulose−5−phosphate (Xu5P), and is decreased by ketone bodies, polyunsaturated fatty acids (PUFAs). Nuclear translocation of ChREBP is inhibited by its phosphorylation, regulated by PKA or AMPK. Acetylation (Ac) and O−GluNAcylation (OC) activate ChREBP transcriptional activity.
See this image and copyright information in PMC

References

    1. The Lancet Gastroenterology Hepatology Obesity: Another ongoing pandemic. Lancet Gastroenterol. Hepatol. 2021;6:411. doi: 10.1016/S2468-1253(21)00143-6. - DOI - PMC - PubMed
    1. Zimmet P., Alberti K.G.M.M., Shaw J. Global and societal implications of the diabetes epidemic. Nature. 2001;414:782–787. doi: 10.1038/414782a. - DOI - PubMed
    1. Kim D.-S., Scherer P.E. Obesity, Diabetes, and Increased Cancer Progression. Diabetes Metab. J. 2021;45:799–812. doi: 10.4093/dmj.2021.0077. - DOI - PMC - PubMed
    1. Kahn S.E. The relative contributions of insulin resistance and beta-cell dysfunction to the pathophysiology of Type 2 diabetes. Diabetologia. 2003;46:3–19. doi: 10.1007/s00125-002-1009-0. - DOI - PubMed
    1. Lee S.-H., Park S.-Y., Choi C.S. Insulin Resistance: From Mechanisms to Therapeutic Strategies. Diabetes Metab. J. 2022;46:15–37. doi: 10.4093/dmj.2021.0280. - DOI - PMC - PubMed

Publication types

MeSH terms

Substances

Grants and funding

LinkOut - more resources

Full text links
MDPI full text link MDPI Free PMC article
Cite
Send To

NCBI Literature Resources

MeSHPMCBookshelfDisclaimer

The PubMed wordmark and PubMed logo are registered trademarks of the U.S. Department of Health and Human Services (HHS). Unauthorized use of these marks is strictly prohibited.


[8]ページ先頭

©2009-2025 Movatter.jp