Movatterモバイル変換


[0]ホーム

URL:


Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
Thehttps:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

NIH NLM Logo
Log inShow account info
Access keysNCBI HomepageMyNCBI HomepageMain ContentMain Navigation
pubmed logo
Advanced Clipboard
User Guide

Full text links

Elsevier Science full text link Elsevier Science
Full text links

Actions

.2023 Apr 20:870:161765.
doi: 10.1016/j.scitotenv.2023.161765. Epub 2023 Jan 23.

Assessing siliceous sinter matrices for long-term preservation of lipid biomarkers in opaline sinter deposits analogous to Mars in El Tatio (Chile)

Affiliations

Assessing siliceous sinter matrices for long-term preservation of lipid biomarkers in opaline sinter deposits analogous to Mars in El Tatio (Chile)

Laura Sánchez-García et al. Sci Total Environ..

Abstract

Subaerial hydrothermal systems are of great interest for paleobiology and astrobiology as plausible candidate environments to support the origin of life on Earth that offer a unique and interrelated atmosphere-hydrosphere-lithosphere interface. They harbor extensive sinter deposits of high preservation potential that are promising targets in the search for traces of possible extraterrestrial life on Hesperian Mars. However, long-term quality preservation is paramount for recognizing biosignatures in old samples and there are still significant gaps in our understanding of the impact and extent of taphonomy processes on life fingerprints. Here, we propose a study based on lipid biomarkers -highly resistant cell-membrane components- to investigate the effects of silicification on their preservation in hydrothermal opaline sinter. We explore the lipid biomarkers profile in three sinter deposits of up to ~3000 years from El Tatio, one of the best Martian analogs on Earth. The lipid profile in local living biofilms is used as a fresh counterpart of the fossil biomarkers in the centuries-old sinter deposits to qualitatively assess the taphonomy effects of silicification on the lipid's preservation. Despite the geological alteration, the preserved lipids retained a depleted stable-carbon isotopic fingerprint characteristic of biological sources, result highly relevant for astrobiology. The data allowed us to estimate for the first time the degradation rate of lipid biomarkers in sinter deposits from El Tatio, and to assess the time preservation framework of opaline silica. Auxiliary techniques of higher taxonomic resolution (DNA sequencing and metaproteomics) helped in the reconstruction of the paleobiology. The lipids were the best-preserved biomolecules, whereas the detection of DNA and proteins dropped considerably from 5 cm depth. These findings provide new insights into taphonomy processes affecting life fingerprints in hydrothermal deposits and serves as a useful baseline for assessing the time window for recovering unambiguous signs of past life on Earth and beyond.

Keywords: Lipid biomarkers; Martian analog; Opaline silica; Paleobiology; Preservation; Taphonomy.

Copyright © 2023. Published by Elsevier B.V.

PubMed Disclaimer

Conflict of interest statement

Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

MeSH terms

Substances

LinkOut - more resources

Full text links
Elsevier Science full text link Elsevier Science
Cite
Send To

NCBI Literature Resources

MeSHPMCBookshelfDisclaimer

The PubMed wordmark and PubMed logo are registered trademarks of the U.S. Department of Health and Human Services (HHS). Unauthorized use of these marks is strictly prohibited.


[8]ページ先頭

©2009-2026 Movatter.jp