Insights Gained from RNA Editing Targeted by the CRISPR-Cas13 Family
- PMID:36232699
- PMCID: PMC9569848
- DOI: 10.3390/ijms231911400
Insights Gained from RNA Editing Targeted by the CRISPR-Cas13 Family
Abstract
Clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein (Cas) systems, especially type II (Cas9) systems, have been widely developed for DNA targeting and formed a set of mature precision gene-editing systems. However, the basic research and application of the CRISPR-Cas system in RNA is still in its early stages. Recently, the discovery of the CRISPR-Cas13 type VI system has provided the possibility for the expansion of RNA targeting technology, which has broad application prospects. Most type VI Cas13 effectors have dinuclease activity that catalyzes pre-crRNA into mature crRNA and produces strong RNA cleavage activity. Cas13 can specifically recognize targeted RNA fragments to activate the Cas13/crRNA complex for collateral cleavage activity. To date, the Cas13X protein is the smallest effector of the Cas13 family, with 775 amino acids, which is a promising platform for RNA targeting due to its lack of protospacer flanking sequence (PFS) restrictions, ease of packaging, and absence of permanent damage. This study highlighted the latest progress in RNA editing targeted by the CRISPR-Cas13 family, and discussed the application of Cas13 in basic research, nucleic acid diagnosis, nucleic acid tracking, and genetic disease treatment. Furthermore, we clarified the structure of the Cas13 protein family and their molecular mechanism, and proposed a future vision of RNA editing targeted by the CRISPR-Cas13 family.
Keywords: CRISPR-Cas VI system; CRISPR/Cas13; Cas13X; Cas13d; RNA cleavage activity.
Conflict of interest statement
The authors declare that they have no conflict of interest.
Figures




Similar articles
- Molecular Mechanisms of RNA Targeting by Cas13-containing Type VI CRISPR-Cas Systems.O'Connell MR.O'Connell MR.J Mol Biol. 2019 Jan 4;431(1):66-87. doi: 10.1016/j.jmb.2018.06.029. Epub 2018 Jun 22.J Mol Biol. 2019.PMID:29940185Review.
- Engineered CRISPR RNA improves the RNA cleavage efficiency of hfCas13X.Liu Z, Zhang W, Wang H, Shangguan P, Pan T, Yang Y, Zhang Y, Mao X, Liu Y, Zhang Q.Liu Z, et al.FEBS Lett. 2024 Oct;598(19):2438-2449. doi: 10.1002/1873-3468.15025. Epub 2024 Sep 26.FEBS Lett. 2024.PMID:39327223
- Applications of CRISPR/Cas13-Based RNA Editing in Plants.Kavuri NR, Ramasamy M, Qi Y, Mandadi K.Kavuri NR, et al.Cells. 2022 Aug 27;11(17):2665. doi: 10.3390/cells11172665.Cells. 2022.PMID:36078073Free PMC article.Review.
- Advances in CRISPR-Cas systems for RNA targeting, tracking and editing.Wang F, Wang L, Zou X, Duan S, Li Z, Deng Z, Luo J, Lee SY, Chen S.Wang F, et al.Biotechnol Adv. 2019 Sep-Oct;37(5):708-729. doi: 10.1016/j.biotechadv.2019.03.016. Epub 2019 Mar 27.Biotechnol Adv. 2019.PMID:30926472Review.
- RNA Guide Complementarity Prevents Self-Targeting in Type VI CRISPR Systems.Meeske AJ, Marraffini LA.Meeske AJ, et al.Mol Cell. 2018 Sep 6;71(5):791-801.e3. doi: 10.1016/j.molcel.2018.07.013. Epub 2018 Aug 16.Mol Cell. 2018.PMID:30122537Free PMC article.
Cited by
- Evaluation of the effect of RNA secondary structure on Cas13d-mediated target RNA cleavage.Hussein M, Liu Y, Vink M, Kroon PZ, Das AT, Berkhout B, Herrera-Carrillo E.Hussein M, et al.Mol Ther Nucleic Acids. 2024 Jul 20;35(3):102278. doi: 10.1016/j.omtn.2024.102278. eCollection 2024 Sep 10.Mol Ther Nucleic Acids. 2024.PMID:39220269Free PMC article.
- Structural transitions upon guide RNA binding and their importance in Cas12g-mediated RNA cleavage.Liu M, Li Z, Chen J, Lin J, Lu Q, Ye Y, Zhang H, Zhang B, Ouyang S.Liu M, et al.PLoS Genet. 2023 Sep 20;19(9):e1010930. doi: 10.1371/journal.pgen.1010930. eCollection 2023 Sep.PLoS Genet. 2023.PMID:37729124Free PMC article.
- CRISPR applications in cancer diagnosis and treatment.Wang M, Chen M, Wu X, Huang X, Yu B.Wang M, et al.Cell Mol Biol Lett. 2023 Sep 6;28(1):73. doi: 10.1186/s11658-023-00483-4.Cell Mol Biol Lett. 2023.PMID:37674114Free PMC article.Review.
- CRISPR/Cas-Based Techniques for Live-Cell Imaging and Bioanalysis.Huang S, Dai R, Zhang Z, Zhang H, Zhang M, Li Z, Zhao K, Xiong W, Cheng S, Wang B, Wan Y.Huang S, et al.Int J Mol Sci. 2023 Aug 30;24(17):13447. doi: 10.3390/ijms241713447.Int J Mol Sci. 2023.PMID:37686249Free PMC article.Review.
- RNA-Dependent RNA Targeting by CRISPR-Cas Systems: Characterizations and Applications.Gunitseva N, Evteeva M, Borisova A, Patrushev M, Subach F.Gunitseva N, et al.Int J Mol Sci. 2023 Apr 7;24(8):6894. doi: 10.3390/ijms24086894.Int J Mol Sci. 2023.PMID:37108063Free PMC article.Review.
References
- Ishino Y., Shinagawa H., Makino K., Amemura M., Nakata A. Nucleotide-sequence of the iap gene, responsible for alkaline-phosphatase isozyme conversion in Escherichia-coli, and identification of the gene-product. J. Bacteriol. 1987;169:5429–5433. doi: 10.1128/jb.169.12.5429-5433.1987. - DOI - PMC - PubMed
Publication types
MeSH terms
Substances
Related information
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources