Movatterモバイル変換


[0]ホーム

URL:


Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
Thehttps:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

NIH NLM Logo
Log inShow account info
Access keysNCBI HomepageMyNCBI HomepageMain ContentMain Navigation
pubmed logo
Advanced Clipboard
User Guide

Full text links

De Gruyter full text link De Gruyter Free PMC article
Full text links

Actions

Share

.2022 Sep 30;73(3):207-222.
doi: 10.2478/aiht-2022-73-3650. eCollection 2022 Sep 1.

Redox and biometal status in Wistar rats after subacute exposure to fluoride and selenium counter-effects

Affiliations

Redox and biometal status in Wistar rats after subacute exposure to fluoride and selenium counter-effects

Jelena Radovanović et al. Arh Hig Rada Toksikol..

Abstract
in English, Croatian

This study aimed to investigate the effect of 150 mg/L sodium fluoride (NaF) on redox status parameters and essential metals [copper (Cu), iron (Fe), and zinc (Zn)] in the blood, liver, kidney, brain, and spleen of Wistar rats and to determine the protective potential of selenium (Se) against fluoride (F-) toxicity. Male Wistar rats were randomly distributed in groups of five (n=5) receiving tap water (control) or water with NaF 150 mg/L, NaF 150 mg/L + Se 1.5 mg/L, and Se 1.5 mg/L solutionsad libitum for 28 days. Fluorides caused an imbalance in the redox and biometal (Cu, Fe, and Zn) status, leading to high superoxide anion (O2 .-) and malondialdehyde (MDA) levels in the blood and brain and a drop in superoxide dismutase (SOD1) activity in the liver and its increase in the brain and kidneys. Se given with NaF improved MDA, SOD1, and O2 .- in the blood, brain, and kidneys, while alone it decreased SH group levels in the liver and kidney. Biometals both reduced and increased F- toxicity. Further research is needed before Se should be considered as a promising strategy for mitigating F- toxicity.

Cilj ovog istraživanja bio je utvrditi djelovanje 150 mg/L natrijevog fluorida (NaF) na redoks-status i koncentracije esencijalnih elemenata [bakar (Cu), željezo (Fe) i cink (Zn)] u krvi, jetri, bubrezima, mozgu i slezeni Wistar štakora te mogući zaštitni učinak selena (Se) od toksičnosti prouzročene fluoridom (F-). Mužjaci Wistar štakora nasumično su razvrstani u četiri skupine (n=5), nakon čega su 28 dana konzumirali običnu vodu ili vodu s otopinom NaF 150 mg/L, NaF 150 mg/L + Se 1,5 mg/L ili Se 1,5 mg/L. Izloženost fluoridu dovela je do poremećaja redoks-parametara i koncentracija istraživanih biometala. Utvrđene su povišene razine superoksid aniona (O2.-) i malondialdehida (MDA) u krvi i mozgu, smanjena aktivnost superoksid dismutaze (SOD1) u jetri te njezin porast u mozgu i bubrezima. Nadomjesni Se u kombinaciji s NaF pozitivno je utjecao na razine MDA, SOD1 i O2.- u krvi, mozgu i bubrezima, a sâm Se smanjio je razine SH skupina u jetri i bubrezima. Izloženost fluoridu uzrokovala je sniženje, ali i porast koncentracija biometala. Nužna su dodatna istraživanja kako bi se ispitali antioksidacijski učinci Se na toksičnost izazvanu F-.

Keywords: Cu; Fe; MDA; NaF; O2.-; SOD1; Se; Zn; natrijev fluorid; oksidacijski stres; oxidative stress; sodium fluoride; subacute toxicity; subakutna toksičnost.

© 2022 Jelena Radovanović, Biljana Antonijević, Katarina Baralić, Marijana Ćurčić, Danijela Đukić-Ćosić, Zorica Bulat, Dragana Javorac, Aleksandra Buha Đorđević, Jelena Kotur-Stevuljević, Emina Sudar-Milovanović, Evica Antonijević Miljaković, Miloš Beloica, and Zoran Mandinić, published by Sciendo.

PubMed Disclaimer

Conflict of interest statement

Conflicts of interest

None to declare.

Figures

Figure 1
Figure 1
Median (and range) of water consumption (mL/day) by groups of Wistar rats exposed to fluoride and/or selenium for 28 days.* p<0.05;*** p<0.001 – significant differences compared to control (Kruskal-Wallis followed by Dunn’s test). F group – exposed to sodium fluoride alone (150 mg/L); Se group – exposed to sodium selenite alone (1.5 mg/L); F+Se group – exposed to the combination of F and Se at the same concentrations
Figure 2
Figure 2
Blood redox parameters in Wistar rats exposed to fluoride 150 mg/L and/or selenium 1.5 mg/L through drinking water for 28 days. a) O2.- – superoxide anion (μmol/min/L); b) TOS – total oxidative status (μmol/L); c) SOD1 – superoxide dismutase activity (U/L); d) SH – total thiol groups (mmol/L); e) MDA – malondialdehyde (μmol/L).* # p<0.05;** aa p<0.01 – significant differences from control group are indicated by *, from the Se group by#, from the F group bya (one-way ANOVA followed by Fisher’s LSD and Kruskal-Wallis test followed by Dunn’spost-hoc test). The line inside of the box presents the median, the box presents interquartile range (25–75 %). End limiters present minima and maxima
Figure 3
Figure 3
Liver redox parameters in Wistar rats exposed to fluoride 150 mg/L and/or selenium 1.5 mg/L through drinking water for 28 days. a) O2.- – superoxide anion (μmol/min/g protein); b) TOS – total oxidative status (μmol/g protein); c) SOD1 – superoxide dismutase activity (U/g protein); d) SH – total thiol groups (mmol/g protein); e) MDA – malondialdehyde (μmol/g protein).* p<0.05;** ## p<0.01 – significant differences from control group are indicated by *, from the Se group by# (one-way ANOVA followed by Fisher’s LSD and Kruskal-Wallis test followed by Dunn’spost-hoc test). The line inside of the box presents the median, the box presents interquartile range (25–75 %). End limiters present minima and maxima
Figure 4
Figure 4
Spleen redox parameters in Wistar rats exposed to fluoride 150 mg/L and/or selenium 1.5 mg/L through drinking water for 28 days. a) O2.- – superoxide anion (μmol/min/g protein); b) TOS – total oxidative status (μmol/g protein); c) SOD1 – superoxide dismutase activity (U/g protein), d) SH – total thiol groups (mmol/g protein); e) MDA – malondialdehyde (μmol/g protein).a p<0.05 – significant differences from the F group are indicated bya (One-way ANOVA followed by Fisher’s LSD and Kruskal-Wallis test followed by Dunn’spost-hoc test). The line inside of the box presents the median, the box presents interquartile range (25–75 %). End limiters present minima and maxima
Figure 5
Figure 5
Brain redox parameters in Wistar rats exposed to fluoride 150 mg/L and/or selenium 1.5 mg/L through drinking water for 28 days. a) O2.- – superoxide anion (μmol/min/g protein); b) TOS – total oxidative status (μmol/g protein); c) SOD1 – superoxide dismutase activity (U/g protein); d) MDA – malondialdehyde (μmol/g protein).* # a p<0.05;### p<0.001 – significant differences from control group are indicated by *, from the Se group by#, from the F group bya (one-way ANOVA followed by Fisher’s LSD and Kruskal-Wallis test followed by Dunn’spost-hoc test). The line inside of the box presents the median, the box presents interquartile range (25–75 %). End limiters present minima and maxima
Figure 6
Figure 6
Kidney redox parameters in Wistar rats exposed to fluoride 150 mg/L and/or selenium 1.5 mg/L through drinking water for 28 days. a) O2.-– superoxide anion (μmol/min/g protein); b) TOS – total oxidative status (μmol/g protein); c) SOD1 – superoxide dismutase activity (U/ g protein); d) SH – total thiol groups (mmol/g protein); e) MDA – malondialdehyde (μmol/g protein).* # p<0.05;** p<0.01;*** p<0.001;**** p<0.0001 – significant differences from control group are indicated by *, from the Se group by# (one-way ANOVA followed by Fisher’s LSD and Kruskal-Wallis test followed by Dunn’spost-hoc test). The line inside of the box presents the median, the box presents interquartile range (25–75 %). End limiters present minima and maxima
Figure 7
Figure 7
Mean (±SD) liver, spleen, brain, and kidney fluoride levels (mg/kg) in Wistar rats exposed to fluoride (150 mg/L) and/or selenium (1.5 mg/L) through drinking water for 28 days.a p<0.05; ** p<0.01; **** p<0.0001 – significant differences from control are indicated by *, from the F group bya (one-way ANOVA followed by Fisher’s LSD)
See this image and copyright information in PMC

Similar articles

See all similar articles

References

    1. Air quality guidelines for Europe. 2nd ed. WHO regional publications, European series 91. Copenhagen: WHO Regional Office for Europe; 2000. Fluoride; p. 143–5. World Health Organization (WHO) p. - PubMed
    1. Fluorides and oral health: report of a WHO Expert Committee on Oral Health Status and Fluoride Use [meeting held in Geneva from 22 to 28 November 1993] [displayed 13 September 2022]https://apps.who.int/iris/handle/10665/39746https://apps.who.int/iris/handle/10665/39746 World Health Organization (WHO) Available at.
    1. Aoun A, Darwiche F, Al Hayek S, Doumit J. The fluoride debate: The pros and cons of fluoridation. Prev Nutr Food Sci. 2018;23:171–80. doi: 10.3746/pnf.2018.23.3.171. - DOI - PMC - PubMed
    1. O’Mullane DM, Baez RJ, Jones S, Lennon MA, Petersen PE, Rugg-Gunn AJ, Whelton H, Whitford GM. Fluoride and oral health. Community Dent Health. 2016;33:69–99. PMID: 27352462. - PubMed
    1. Cape JN, Fowler D, Davison A. Ecological effects of sulfur dioxide, fluorides, and minor air pollutants: recent trends and research needs. Environ Int. 2003;29:201–11. doi: 10.1016/s0160-4120(02)00180-0. - DOI - PubMed

MeSH terms

Substances

Related information

LinkOut - more resources

Full text links
De Gruyter full text link De Gruyter Free PMC article
Cite
Send To

NCBI Literature Resources

MeSHPMCBookshelfDisclaimer

The PubMed wordmark and PubMed logo are registered trademarks of the U.S. Department of Health and Human Services (HHS). Unauthorized use of these marks is strictly prohibited.


[8]ページ先頭

©2009-2025 Movatter.jp