Movatterモバイル変換


[0]ホーム

URL:


Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
Thehttps:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

NIH NLM Logo
Log inShow account info
Access keysNCBI HomepageMyNCBI HomepageMain ContentMain Navigation
pubmed logo
Advanced Clipboard
User Guide

Full text links

Nature Publishing Group full text link Nature Publishing Group Free PMC article
Full text links

Actions

Share

.2023 Feb;614(7949):649-652.
doi: 10.1038/s41586-022-05269-w. Epub 2022 Sep 2.

Identification of carbon dioxide in an exoplanet atmosphere

Collaborators

Identification of carbon dioxide in an exoplanet atmosphere

JWST Transiting Exoplanet Community Early Release Science Team. Nature.2023 Feb.

Abstract

Carbon dioxide (CO2) is a key chemical species that is found in a wide range of planetary atmospheres. In the context of exoplanets, CO2 is an indicator of the metal enrichment (that is, elements heavier than helium, also called 'metallicity')1-3, and thus the formation processes of the primary atmospheres of hot gas giants4-6. It is also one of the most promising species to detect in the secondary atmospheres of terrestrial exoplanets7-9. Previous photometric measurements of transiting planets with the Spitzer Space Telescope have given hints of the presence of CO2, but have not yielded definitive detections owing to the lack of unambiguous spectroscopic identification10-12. Here we present the detection of CO2 in the atmosphere of the gas giant exoplanet WASP-39b from transmission spectroscopy observations obtained with JWST as part of the Early Release Science programme13,14. The data used in this study span 3.0-5.5 micrometres in wavelength and show a prominent CO2 absorption feature at 4.3 micrometres (26-sigma significance). The overall spectrum is well matched by one-dimensional, ten-times solar metallicity models that assume radiative-convective-thermochemical equilibrium and have moderate cloud opacity. These models predict that the atmosphere should have water, carbon monoxide and hydrogen sulfide in addition to CO2, but little methane. Furthermore, we also tentatively detect a small absorption feature near 4.0 micrometres that is not reproduced by these models.

© 2022. The Author(s), under exclusive licence to Springer Nature Limited.

PubMed Disclaimer

Conflict of interest statement

The authors declare no competing interests.

Figures

Fig. 1
Fig. 1. JWST NIRSpec time-series data for WASP-39b.
a, Spectroscopic light curves for WASP-39b’s transit with a spectral resolving power of 20 and a time cadence of 1 min (data are binned and offset vertically for display purposes only). An exoplanet light-curve model was fitted to the data using a quadratic limb-darkening law with an exponential ramp and a quadratic function of time removed.b, Residuals of the binned light curve after subtracting the transit model scaled up by a factor of five to show the structure. The r.m.s. of the residuals are given in units of ppm. The numbers in brackets are the ratio of the r.m.s. to the predicted photon-limited noise. Source data.
Fig. 2
Fig. 2. Independent reductions of the WASP-39b transmission spectrum.
The JWST data (small coloured points) are compared with Spitzer’s two Infrared Array Camera (IRAC) broadband photometric measurements (grey circles and corresponding sensitivity curves labelled IRAC1 and IRAC2). The axis on the right shows equivalent scale heights (750–1,000 km) in WASP-39b’s atmosphere; for plotting purposes, we assume that one scale height corresponds to 800 km. The JWST data are consistent with the Spitzer points (within 2σ) when integrated over the broad bandpasses (indicated by the horizontal lines). The relative transit depths between the 3.6-µm and 4.5-µm channels are also consistent within 2σ between independent reductions of the JWST data, with most of the deviation coming from the 3.6-µm bandpass. Vertical error bars indicate 1σ uncertainties.
Fig. 3
Fig. 3. Interpretation of WASP-39b’s transmission spectrum.
Top: a comparison of the FIREFLy reduction and its 1σ uncertainties (labelled ‘Data’) to the best-fit ScCHIMERA theoretical model binned to the resolution of the data (blue curve; Methods). The key parameters of the model are 10-times solar metallicity, a carbon-to-oxygen ratio of 0.35 and cloud opacity of 7 × 10−3 cm2 g−1. The impact of the opacity sources expected from thermochemical equilibrium over the full bandpass are indicated by removing the opacity contribution from individual gases one at a time. As in Fig. 2, the axis on the right shows equivalent scale heights in WASP-39b’s atmosphere. Bottom: the molecular absorption cross-sections for each gas in the best-fit model. The model is well matched to the data (Χ2/Ndata = 1.3), suggesting that our assumptions broadly capture the important physics and chemistry in WASP-39b’s atmosphere. However, there is a feature near 4.0 µm that cannot be reproduced by the models used here. The strong CO2 absorption (4.1–4.6 µm) and the apparent lack of methane (3.0–3.5 µm) is what drives the solution to an elevated atmospheric metal enrichment, ruling out previous low-metallicity estimates. The other reductions and models give similar results.
Extended Data Fig. 1
Extended Data Fig. 1. Comparison of transmission spectrum modelling results from different codes for WASP-39b.
Despite different radiative–convective equilibrium and chemical solvers, treatments of clouds, grid spacing and grid-fitting approaches, all four grids arrive at the same 10-times solar metallicity point solution. Additionally, all four provide an acceptable fit to the data, with best-fittingΧ2/Ndata < 1.4.
Extended Data Fig. 2
Extended Data Fig. 2. Atmospheric structure arising from the best-fit model.
The thick red curve (and corresponding topx axis) shows the resulting 1D radiative–convective equilibrium temperature profile. The dashed lines (and bottomx axis) show the vertical gas mixing ratio profiles under the assumption of thermochemical equilibrium. These abundances, along with the absorption cross-sections shown in the bottom panel of Fig. 3, are what control the relative contributions of each gaseous opacity to the total transmission spectrum.
Extended Data Fig. 3
Extended Data Fig. 3. Assessment of the strength of spectral features for WASP-39b.
Residual features (blue data points) after subtracting the continuum best model (black ‘no CO2’ model curve in Fig. 3). A best-fitting ensemble of a two-component Gaussian model to both the CO2 feature and the unknown absorber feature (~4 µm) is shown in red.
See this image and copyright information in PMC

Comment in

Similar articles

  • Photochemically produced SO2 in the atmosphere of WASP-39b.
    Tsai SM, Lee EKH, Powell D, Gao P, Zhang X, Moses J, Hébrard E, Venot O, Parmentier V, Jordan S, Hu R, Alam MK, Alderson L, Batalha NM, Bean JL, Benneke B, Bierson CJ, Brady RP, Carone L, Carter AL, Chubb KL, Inglis J, Leconte J, Line M, López-Morales M, Miguel Y, Molaverdikhani K, Rustamkulov Z, Sing DK, Stevenson KB, Wakeford HR, Yang J, Aggarwal K, Baeyens R, Barat S, de Val-Borro M, Daylan T, Fortney JJ, France K, Goyal JM, Grant D, Kirk J, Kreidberg L, Louca A, Moran SE, Mukherjee S, Nasedkin E, Ohno K, Rackham BV, Redfield S, Taylor J, Tremblin P, Visscher C, Wallack NL, Welbanks L, Youngblood A, Ahrer EM, Batalha NE, Behr P, Berta-Thompson ZK, Blecic J, Casewell SL, Crossfield IJM, Crouzet N, Cubillos PE, Decin L, Désert JM, Feinstein AD, Gibson NP, Harrington J, Heng K, Henning T, Kempton EM, Krick J, Lagage PO, Lendl M, Lothringer JD, Mansfield M, Mayne NJ, Mikal-Evans T, Palle E, Schlawin E, Shorttle O, Wheatley PJ, Yurchenko SN.Tsai SM, et al.Nature. 2023 May;617(7961):483-487. doi: 10.1038/s41586-023-05902-2. Epub 2023 Apr 26.Nature. 2023.PMID:37100917Free PMC article.
  • Early Release Science of the exoplanet WASP-39b with JWST NIRCam.
    Ahrer EM, Stevenson KB, Mansfield M, Moran SE, Brande J, Morello G, Murray CA, Nikolov NK, Petit Dit de la Roche DJM, Schlawin E, Wheatley PJ, Zieba S, Batalha NE, Damiano M, Goyal JM, Lendl M, Lothringer JD, Mukherjee S, Ohno K, Batalha NM, Battley MP, Bean JL, Beatty TG, Benneke B, Berta-Thompson ZK, Carter AL, Cubillos PE, Daylan T, Espinoza N, Gao P, Gibson NP, Gill S, Harrington J, Hu R, Kreidberg L, Lewis NK, Line MR, López-Morales M, Parmentier V, Powell DK, Sing DK, Tsai SM, Wakeford HR, Welbanks L, Alam MK, Alderson L, Allen NH, Anderson DR, Barstow JK, Bayliss D, Bell TJ, Blecic J, Bryant EM, Burleigh MR, Carone L, Casewell SL, Changeat Q, Chubb KL, Crossfield IJM, Crouzet N, Decin L, Désert JM, Feinstein AD, Flagg L, Fortney JJ, Gizis JE, Heng K, Iro N, Kempton EM, Kendrew S, Kirk J, Knutson HA, Komacek TD, Lagage PO, Leconte J, Lustig-Yaeger J, MacDonald RJ, Mancini L, May EM, Mayne NJ, Miguel Y, Mikal-Evans T, Molaverdikhani K, Palle E, Piaulet C, Rackham BV, Redfield S, Rogers LK, Roy PA, Rustamkulov Z, Shkolnik EL, Sotzen KS, Taylor J, Tremblin P, Tucker GS, Turner JD, de Val-Borro M, Venot O, Zhang X.Ahrer EM, et al.Nature. 2023 Feb;614(7949):653-658. doi: 10.1038/s41586-022-05590-4. Epub 2023 Jan 9.Nature. 2023.PMID:36623551Free PMC article.
  • Early Release Science of the exoplanet WASP-39b with JWST NIRSpec PRISM.
    Rustamkulov Z, Sing DK, Mukherjee S, May EM, Kirk J, Schlawin E, Line MR, Piaulet C, Carter AL, Batalha NE, Goyal JM, López-Morales M, Lothringer JD, MacDonald RJ, Moran SE, Stevenson KB, Wakeford HR, Espinoza N, Bean JL, Batalha NM, Benneke B, Berta-Thompson ZK, Crossfield IJM, Gao P, Kreidberg L, Powell DK, Cubillos PE, Gibson NP, Leconte J, Molaverdikhani K, Nikolov NK, Parmentier V, Roy P, Taylor J, Turner JD, Wheatley PJ, Aggarwal K, Ahrer E, Alam MK, Alderson L, Allen NH, Banerjee A, Barat S, Barrado D, Barstow JK, Bell TJ, Blecic J, Brande J, Casewell S, Changeat Q, Chubb KL, Crouzet N, Daylan T, Decin L, Désert J, Mikal-Evans T, Feinstein AD, Flagg L, Fortney JJ, Harrington J, Heng K, Hong Y, Hu R, Iro N, Kataria T, Kempton EM, Krick J, Lendl M, Lillo-Box J, Louca A, Lustig-Yaeger J, Mancini L, Mansfield M, Mayne NJ, Miguel Y, Morello G, Ohno K, Palle E, Petit Dit de la Roche DJM, Rackham BV, Radica M, Ramos-Rosado L, Redfield S, Rogers LK, Shkolnik EL, Southworth J, Teske J, Tremblin P, Tucker GS, Venot O, Waalkes WC, Welbanks L, Zhang X, Zieba S.Rustamkulov Z, et al.Nature. 2023 Feb;614(7949):659-663. doi: 10.1038/s41586-022-05677-y. Epub 2023 Jan 9.Nature. 2023.PMID:36623548Free PMC article.
  • M stars as targets for terrestrial exoplanet searches and biosignature detection.
    Scalo J, Kaltenegger L, Segura A, Fridlund M, Ribas I, Kulikov YN, Grenfell JL, Rauer H, Odert P, Leitzinger M, Selsis F, Khodachenko ML, Eiroa C, Kasting J, Lammer H.Scalo J, et al.Astrobiology. 2007 Feb;7(1):85-166. doi: 10.1089/ast.2006.0125.Astrobiology. 2007.PMID:17407405Review.
  • A Review of Possible Planetary Atmospheres in the TRAPPIST-1 System.
    Turbet M, Bolmont E, Bourrier V, Demory BO, Leconte J, Owen J, Wolf ET.Turbet M, et al.Space Sci Rev. 2020;216(5):100. doi: 10.1007/s11214-020-00719-1. Epub 2020 Jul 23.Space Sci Rev. 2020.PMID:32764836Free PMC article.Review.
See all similar articles

Cited by

  • Photochemically produced SO2 in the atmosphere of WASP-39b.
    Tsai SM, Lee EKH, Powell D, Gao P, Zhang X, Moses J, Hébrard E, Venot O, Parmentier V, Jordan S, Hu R, Alam MK, Alderson L, Batalha NM, Bean JL, Benneke B, Bierson CJ, Brady RP, Carone L, Carter AL, Chubb KL, Inglis J, Leconte J, Line M, López-Morales M, Miguel Y, Molaverdikhani K, Rustamkulov Z, Sing DK, Stevenson KB, Wakeford HR, Yang J, Aggarwal K, Baeyens R, Barat S, de Val-Borro M, Daylan T, Fortney JJ, France K, Goyal JM, Grant D, Kirk J, Kreidberg L, Louca A, Moran SE, Mukherjee S, Nasedkin E, Ohno K, Rackham BV, Redfield S, Taylor J, Tremblin P, Visscher C, Wallack NL, Welbanks L, Youngblood A, Ahrer EM, Batalha NE, Behr P, Berta-Thompson ZK, Blecic J, Casewell SL, Crossfield IJM, Crouzet N, Cubillos PE, Decin L, Désert JM, Feinstein AD, Gibson NP, Harrington J, Heng K, Henning T, Kempton EM, Krick J, Lagage PO, Lendl M, Lothringer JD, Mansfield M, Mayne NJ, Mikal-Evans T, Palle E, Schlawin E, Shorttle O, Wheatley PJ, Yurchenko SN.Tsai SM, et al.Nature. 2023 May;617(7961):483-487. doi: 10.1038/s41586-023-05902-2. Epub 2023 Apr 26.Nature. 2023.PMID:37100917Free PMC article.
  • Can Isotopologues Be Used as Biosignature Gases in Exoplanet Atmospheres?
    Glidden A, Seager S, Petkowski JJ, Ono S.Glidden A, et al.Life (Basel). 2023 Dec 11;13(12):2325. doi: 10.3390/life13122325.Life (Basel). 2023.PMID:38137926Free PMC article.Review.
  • Sulfur dioxide in the mid-infrared transmission spectrum of WASP-39b.
    Powell D, Feinstein AD, Lee EKH, Zhang M, Tsai SM, Taylor J, Kirk J, Bell T, Barstow JK, Gao P, Bean JL, Blecic J, Chubb KL, Crossfield IJM, Jordan S, Kitzmann D, Moran SE, Morello G, Moses JI, Welbanks L, Yang J, Zhang X, Ahrer EM, Bello-Arufe A, Brande J, Casewell SL, Crouzet N, Cubillos PE, Demory BO, Dyrek A, Flagg L, Hu R, Inglis J, Jones KD, Kreidberg L, López-Morales M, Lagage PO, Meier Valdés EA, Miguel Y, Parmentier V, Piette AAA, Rackham BV, Radica M, Redfield S, Stevenson KB, Wakeford HR, Aggarwal K, Alam MK, Batalha NM, Batalha NE, Benneke B, Berta-Thompson ZK, Brady RP, Caceres C, Carter AL, Désert JM, Harrington J, Iro N, Line MR, Lothringer JD, MacDonald RJ, Mancini L, Molaverdikhani K, Mukherjee S, Nixon MC, Oza AV, Palle E, Rustamkulov Z, Sing DK, Steinrueck ME, Venot O, Wheatley PJ, Yurchenko SN.Powell D, et al.Nature. 2024 Feb;626(8001):979-983. doi: 10.1038/s41586-024-07040-9. Epub 2024 Jan 17.Nature. 2024.PMID:38232945Free PMC article.
  • Direct observation of coherence transfer and rotational-to-vibrational energy exchange in optically centrifuged CO2 super-rotors.
    Chen TY, Steinmetz SA, Patterson BD, Jasper AW, Kliewer CJ.Chen TY, et al.Nat Commun. 2023 Jun 3;14(1):3227. doi: 10.1038/s41467-023-38873-z.Nat Commun. 2023.PMID:37270647Free PMC article.
  • Experimental Polarizability Transition Moments of CO2 for Excited Vibrational States.
    Álvarez C, Tejeda G, Fernández JM.Álvarez C, et al.Molecules. 2024 Oct 29;29(21):5103. doi: 10.3390/molecules29215103.Molecules. 2024.PMID:39519746Free PMC article.

References

    1. Lodders K, Fegley B. Atmospheric chemistry in giant planets, brown dwarfs, and low-mass dwarf stars. I. Carbon, nitrogen, and oxygen. Icarus. 2002;155:393–424. doi: 10.1006/icar.2001.6740. - DOI
    1. Zahnle K, Marley MS, Freedman RS, Lodders K, Fortney JJ. Atmospheric sulfur photochemistry on hot Jupiters. Astrophys. J. Lett. 2009;701:L20–L24. doi: 10.1088/0004-637X/701/1/L20. - DOI
    1. Moses JI, et al. Compositional diversity in the atmospheres of hot Neptunes, with application to GJ 436b. Astrophys. J. 2013;777:34. doi: 10.1088/0004-637X/777/1/34. - DOI - PMC - PubMed
    1. Pollack JB, et al. Formation of the giant planets by concurrent accretion of solids and gas. Icarus. 1996;124:62–85. doi: 10.1006/icar.1996.0190. - DOI
    1. Fortney JJ, et al. A framework for characterizing the atmospheres of low-mass low-density transiting planets. Astrophys. J. 2013;775:80. doi: 10.1088/0004-637X/775/1/80. - DOI

Publication types

Grants and funding

LinkOut - more resources

Full text links
Nature Publishing Group full text link Nature Publishing Group Free PMC article
Cite
Send To

NCBI Literature Resources

MeSHPMCBookshelfDisclaimer

The PubMed wordmark and PubMed logo are registered trademarks of the U.S. Department of Health and Human Services (HHS). Unauthorized use of these marks is strictly prohibited.


[8]ページ先頭

©2009-2025 Movatter.jp