Structural disulfide bonds in the Bacillus thuringiensis subsp. israelensis protein crystal
- PMID:3597322
- PMCID: PMC212381
- DOI: 10.1128/jb.169.7.3281-3288.1987
Structural disulfide bonds in the Bacillus thuringiensis subsp. israelensis protein crystal
Abstract
We examined disulfide bonds in mosquito larvicidal crystals produced by Bacillus thuringiensis subsp. israelensis. Intact crystals contained 2.01 X 10(-8) mol of free sulfhydryls and 3.24 X 10(-8) mol of disulfides per mg of protein. Reduced samples of alkali-solubilized crystals resolved into several proteins, the most prominent having apparent molecular sizes of 28, 70, 135, and 140 kilodaltons (kDa). Nonreduced samples contained two new proteins of 52 and 26 kDa. When reduced, both the 52- and 26-kDa proteins were converted to 28-kDa proteins. Furthermore, both bands reacted with antiserum prepared against reduced 28-kDa protein. Approximately 50% of the crystal proteins could be solubilized without disulfide cleavage. These proteins were 70 kDa or smaller. Solubilization of the 135- and 140-kDa proteins required disulfide cleavage. Incubation of crystals at pH 12.0 for 2 h cleaved 40% of the disulfide bonds and solubilized 83% of the crystal protein. Alkali-stable disulfides were present in both the soluble and insoluble portions. The insoluble pellet contained 12 to 14 disulfides per 100 kDa of protein and was devoid of sulfhydryl groups. Alkali-solubilized proteins contained both intrachain and interchain disulfide bonds. Despite their structural significance, it is unlikely that disulfide bonds are involved in the formation or release of the larvicidal toxin.
Similar articles
- Characterization of mosquitocidal activity of Bacillus thuringiensis subsp. fukuokaensis crystal proteins.Yu YM, Ohba M, Gill SS.Yu YM, et al.Appl Environ Microbiol. 1991 Apr;57(4):1075-81. doi: 10.1128/aem.57.4.1075-1081.1991.Appl Environ Microbiol. 1991.PMID:2059032Free PMC article.
- Analysis of mosquito larvicidal potential exhibited by vegetative cells of Bacillus thuringiensis subsp. israelensis.Walther CJ, Couche GA, Pfannenstiel MA, Egan SE, Bivin LA, Nickerson KW.Walther CJ, et al.Appl Environ Microbiol. 1986 Oct;52(4):650-3. doi: 10.1128/aem.52.4.650-653.1986.Appl Environ Microbiol. 1986.PMID:3777922Free PMC article.
- Immunological relationships among proteins making up the Bacillus thuringiensis subsp. israelensis crystalline toxin.Pfannenstiel MA, Couche GA, Ross EJ, Nickerson KW.Pfannenstiel MA, et al.Appl Environ Microbiol. 1986 Oct;52(4):644-9. doi: 10.1128/aem.52.4.644-649.1986.Appl Environ Microbiol. 1986.PMID:3535673Free PMC article.
- Stability of the larvicidal activity of Bacillus thuringiensis subsp. israelensis: amino acid modification and denaturants.Pfannenstiel MA, Couche GA, Muthukumar G, Nickerson KW.Pfannenstiel MA, et al.Appl Environ Microbiol. 1985 Nov;50(5):1196-9. doi: 10.1128/aem.50.5.1196-1199.1985.Appl Environ Microbiol. 1985.PMID:2868691Free PMC article.
- The inactivation of Bacillus thuringiensis subsp. israelensis toxin by mosquito larvae proteases liberated into the medium.García-Patrone M, Reboredo RG, Torres HN, Rubinstein C, Stoka A.García-Patrone M, et al.Biochem Biophys Res Commun. 1986 Mar 28;135(3):902-8. doi: 10.1016/0006-291x(86)91013-2.Biochem Biophys Res Commun. 1986.PMID:3516151
Cited by
- The glycoprotein toxin of Bacillus thuringiensis subsp. israelensis indicates a lectinlike receptor in the larval mosquito gut.Muthukumar G, Nickerson KW.Muthukumar G, et al.Appl Environ Microbiol. 1987 Nov;53(11):2650-5. doi: 10.1128/aem.53.11.2650-2655.1987.Appl Environ Microbiol. 1987.PMID:2827571Free PMC article.
- Bacillus thuringiensis subsp. israelensis and its dipteran-specific toxins.Ben-Dov E.Ben-Dov E.Toxins (Basel). 2014 Mar 28;6(4):1222-43. doi: 10.3390/toxins6041222.Toxins (Basel). 2014.PMID:24686769Free PMC article.Review.
- Effect of a 20-kilodalton protein from Bacillus thuringiensis subsp. israelensis on production of the CytA protein by Escherichia coli.Visick JE, Whiteley HR.Visick JE, et al.J Bacteriol. 1991 Mar;173(5):1748-56. doi: 10.1128/jb.173.5.1748-1756.1991.J Bacteriol. 1991.PMID:1900280Free PMC article.
- Role of disulfide bonds in maintaining the structural integrity of the sheath of Leptothrix discophora SP-6.Emerson D, Ghiorse WC.Emerson D, et al.J Bacteriol. 1993 Dec;175(24):7819-27. doi: 10.1128/jb.175.24.7819-7827.1993.J Bacteriol. 1993.PMID:8253670Free PMC article.
- In Vivo Crystallization of Three-Domain Cry Toxins.Adalat R, Saleem F, Crickmore N, Naz S, Shakoori AR.Adalat R, et al.Toxins (Basel). 2017 Mar 9;9(3):80. doi: 10.3390/toxins9030080.Toxins (Basel). 2017.PMID:28282927Free PMC article.Review.
References
Publication types
MeSH terms
Substances
Related information
Grants and funding
LinkOut - more resources
Full Text Sources
Research Materials