Biotrophic Fungal Pathogens: a Critical Overview
- PMID:35951248
- DOI: 10.1007/s12010-022-04087-0
Biotrophic Fungal Pathogens: a Critical Overview
Abstract
Biotrophic fungi are one group of heterogeneous organisms and these fungi differ in their traits like mode of nutrition, types of reproduction, and dispersal systems. Generally, based on the nutritional mode, fungi are classified into three broad categories, viz. biotrophs, necrotrophs, and hemi-biotrophs. Biotrophs derive their nutrients and energy from living plant cells and survive within the interstitial space of the cells. Biotrophic fungi cause serious crop diseases but are highly challenging to investigate and develop a treatment strategy. Blumeria (Erysiphe) graminis, Uromyces fabae, Ustilago maydis, Cladosporium fulvum, Puccinia graminis, and Phytophthora infestans are some of the significant biotrophic fungi that affect mainly plants. One among the biotrophic fungus, Pneumocystis jirovecii (Taphrinomycotina subphylum of the Ascomycota) exclusively a human pathogen, can cause lung diseases such as "pneumocystis." Biotrophic fungus widely parasitizing Solanaceae family crops (Tomato and potato) has done massive damage to the crops and has led to economic impact worldwide. During infection and for nutrient absorption, biotrophs develops external appendages such as appressoria or haustoria. The hyphae or appressorium adheres to the plant cell wall and collapses the layers for their nutrient absorption. The pathogen also secretes effector molecules to escape from the plant defense mechanism. Later, plants activate their primary and secondary defense mechanisms; however, the pathogen induces virulence genes to escape the host immune responses. Obligate biotrophic fungi pathogenicity has not been fully understood at the molecular level because of the complex interaction, recognition, and signaling with the host. This review summarizes the mechanism of infection in the host, and immune response to emphasize the understanding of the biotrophic fungal biology and pathogenesis in crops. Thus, the detailed review will pave the way to design methods to overcome the resistance of biotrophic fungi and develop disease-free crops.
Keywords: Control; Fungi; Interaction; Pathogenesis; Plant.
© 2022. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.
Similar articles
- Infection Strategies and Pathogenicity of Biotrophic Plant Fungal Pathogens.Mapuranga J, Zhang N, Zhang L, Chang J, Yang W.Mapuranga J, et al.Front Microbiol. 2022 Jun 2;13:799396. doi: 10.3389/fmicb.2022.799396. eCollection 2022.Front Microbiol. 2022.PMID:35722337Free PMC article.Review.
- Effector Biology of Biotrophic Plant Fungal Pathogens: Current Advances and Future Prospects.Jaswal R, Kiran K, Rajarammohan S, Dubey H, Singh PK, Sharma Y, Deshmukh R, Sonah H, Gupta N, Sharma TR.Jaswal R, et al.Microbiol Res. 2020 Dec;241:126567. doi: 10.1016/j.micres.2020.126567. Epub 2020 Aug 23.Microbiol Res. 2020.PMID:33080488Review.
- Fungal effectors, the double edge sword of phytopathogens.Pradhan A, Ghosh S, Sahoo D, Jha G.Pradhan A, et al.Curr Genet. 2021 Feb;67(1):27-40. doi: 10.1007/s00294-020-01118-3. Epub 2020 Nov 4.Curr Genet. 2021.PMID:33146780Review.
- Transient transformation of the obligate biotrophic rust fungus Uromyces fabae using biolistics.Djulic A, Schmid A, Lenz H, Sharma P, Koch C, Wirsel SG, Voegele RT.Djulic A, et al.Fungal Biol. 2011 Jul;115(7):633-42. doi: 10.1016/j.funbio.2011.03.007. Epub 2011 Apr 9.Fungal Biol. 2011.PMID:21724169
- An investigation into the involvement of defense signaling pathways in components of the nonhost resistance of Arabidopsis thaliana to rust fungi also reveals a model system for studying rust fungal compatibility.Mellersh DG, Heath MC.Mellersh DG, et al.Mol Plant Microbe Interact. 2003 May;16(5):398-404. doi: 10.1094/MPMI.2003.16.5.398.Mol Plant Microbe Interact. 2003.PMID:12744510
Cited by
- In Situ Antimicrobial Properties of Sabinene Hydrate, a Secondary Plant Metabolite.Judžentienė A, Pečiulytė D, Nedveckytė I.Judžentienė A, et al.Molecules. 2024 Sep 7;29(17):4252. doi: 10.3390/molecules29174252.Molecules. 2024.PMID:39275100Free PMC article.
- The same boat, different storm: stress volatile emissions in response to biotrophic fungal infections in primary and alternate hosts.Sulaiman HY, Runno-Paurson E, Niinemets Ü.Sulaiman HY, et al.Plant Signal Behav. 2023 Dec 31;18(1):2217030. doi: 10.1080/15592324.2023.2217030. Epub 2023 May 26.Plant Signal Behav. 2023.PMID:37232366Free PMC article.
- The skin I live in: Pathogenesis of white-nose syndrome of bats.Isidoro-Ayza M, Lorch JM, Klein BS.Isidoro-Ayza M, et al.PLoS Pathog. 2024 Aug 29;20(8):e1012342. doi: 10.1371/journal.ppat.1012342. eCollection 2024 Aug.PLoS Pathog. 2024.PMID:39207947Free PMC article.Review.
- Beneficial Microorganisms as Bioprotectants against Foliar Diseases of Cereals: A Review.Dehbi I, Achemrk O, Ezzouggari R, El Jarroudi M, Mokrini F, Legrifi I, Belabess Z, Laasli SE, Mazouz H, Lahlali R.Dehbi I, et al.Plants (Basel). 2023 Dec 14;12(24):4162. doi: 10.3390/plants12244162.Plants (Basel). 2023.PMID:38140489Free PMC article.Review.
- Uncovering the Mechanisms: The Role of Biotrophic Fungi in Activating or Suppressing Plant Defense Responses.Leiva-Mora M, Capdesuñer Y, Villalobos-Olivera A, Moya-Jiménez R, Saa LR, Martínez-Montero ME.Leiva-Mora M, et al.J Fungi (Basel). 2024 Sep 5;10(9):635. doi: 10.3390/jof10090635.J Fungi (Basel). 2024.PMID:39330396Free PMC article.Review.
References
- Pandey, P., Irulappan, V., Bagavathiannan, M. V., & Senthil-Kumar, M. (2017). Impact of combined abiotic and biotic stresses on plant growth and avenues for crop improvement by exploiting physio-morphological traits. Frontiers in Plant Science, 8, 537.https://doi.org/10.3389/fpls.2017.00537 - DOI
- Tel-Aviv University (2012). Manual. Department of Molecular Biology and Ecology of Plants, p. 298.
- Spanu, P. D., Abbott, J. C., Amselem, J., Burgis, A., Soanes, D. M., Stüber, K., Themaat, E. V. L. V., Brown, J. K. M., Butcher, S. A., Gurr, S. J., Lebrun, M. H., Ridout, C. J., Lefert, P. S., Talbot, N. J., Ahmadinejad, N., Ametz, C., Barton, G. R., Benjdia, M., Bidzinski, P., Bindschedler, L. V., Both, M., Brewer, M. T., Davidson, L. C., Davidson, M. M. C., Collemare, J., Cramer, R., Frenkel, O., Godfrey, O., Harriman, J., Hoede, C., King, B. C., Klages, S., Kleemann, J., Knoll, D., Koti, P. S., Kreplak, J., López-Ruiz, F. J., Lu, X., Maekawa, T., Mahanil, S., Micali, C., Milgroom, M. G., Montana, G., Noir, S., O’Connell, R. J., Oberhaensli, S., Parlange, F., Pedersen, C., Quesneville, H., Reinhardt, R., Rott, M., Sacristán, S., Schmidt, S. M., Schön, M., Skamnioti, P., Sommer, H., Stephens, A., Takahara, H., Christensen, H. T., Vigouroux, M., WeBling, R., Wicker, T., & Panstruga, R. (2010) Genome expansion and gene loss in powdery mildew fungi reveal tradeoffs in extreme parasitism. Science, 330, 1543–1545.
- Begum, N., Qin, C., Ahanger, M. A., Raza, S., Khan, M. I., Ashraf, M., Ahmed, N., & Zhang, L. (2019). Role of arbuscular mycorrhizal fungi in plant growth regulation: Implications in abiotic stress tolerance. Frontiers in Plant Science, 10, 1068.https://doi.org/10.3389/fpls.2019.01068 - DOI
- Kemen, E., & Jones, J. D. G. (2012). Obligate biotroph parasitism: Can we link genomes to life-styles? Trends in Plant Science, 17, 448–457. - DOI
Publication types
MeSH terms
Substances
Supplementary concepts
Related information
LinkOut - more resources
Full Text Sources