Smooth or with a Snap! Biomechanics of Trap Reopening in the Venus Flytrap (Dionaea muscipula)
- PMID:35642470
- PMCID: PMC9353449
- DOI: 10.1002/advs.202201362
Smooth or with a Snap! Biomechanics of Trap Reopening in the Venus Flytrap (Dionaea muscipula)
Abstract
Fast snapping in the carnivorous Venus flytrap (Dionaea muscipula) involves trap lobe bending and abrupt curvature inversion (snap-buckling), but how do these traps reopen? Here, the trap reopening mechanics in two different D. muscipula clones, producing normal-sized (N traps, max. ≈3 cm in length) and large traps (L traps, max. ≈4.5 cm in length) are investigated. Time-lapse experiments reveal that both N and L traps can reopen by smooth and continuous outward lobe bending, but only L traps can undergo smooth bending followed by a much faster snap-through of the lobes. Additionally, L traps can reopen asynchronously, with one of the lobes moving before the other. This study challenges the current consensus on trap reopening, which describes it as a slow, smooth process driven by hydraulics and cell growth and/or expansion. Based on the results gained via three-dimensional digital image correlation (3D-DIC), morphological and mechanical investigations, the differences in trap reopening are proposed to stem from a combination of size and slenderness of individual traps. This study elucidates trap reopening processes in the (in)famous Dionaea snap traps - unique shape-shifting structures of great interest for plant biomechanics, functional morphology, and applications in biomimetics, i.e., soft robotics.
Keywords: biomechanics; carnivorous plants; mechanical instability problems; plant movement; snap-buckling; snap-traps.
© 2022 The Authors. Advanced Science published by Wiley-VCH GmbH.
Conflict of interest statement
The authors declare no conflict of interest.
Figures





Similar articles
- Comparative kinematical analyses of Venus flytrap (Dionaea muscipula) snap traps.Poppinga S, Kampowski T, Metzger A, Speck O, Speck T.Poppinga S, et al.Beilstein J Nanotechnol. 2016 May 4;7:664-74. doi: 10.3762/bjnano.7.59. eCollection 2016.Beilstein J Nanotechnol. 2016.PMID:27335756Free PMC article.
- Shapeshifting in the Venus flytrap (Dionaea muscipula): Morphological and biomechanical adaptations and the potential costs of a failed hunting cycle.Durak GM, Speck T, Poppinga S.Durak GM, et al.Front Plant Sci. 2022 Sep 2;13:970320. doi: 10.3389/fpls.2022.970320. eCollection 2022.Front Plant Sci. 2022.PMID:36119615Free PMC article.Review.
- Different mechanics of snap-trapping in the two closely related carnivorous plants Dionaea muscipula and Aldrovanda vesiculosa.Poppinga S, Joyeux M.Poppinga S, et al.Phys Rev E Stat Nonlin Soft Matter Phys. 2011 Oct;84(4 Pt 1):041928. doi: 10.1103/PhysRevE.84.041928. Epub 2011 Oct 24.Phys Rev E Stat Nonlin Soft Matter Phys. 2011.PMID:22181196
- Functional-morphological analyses of the delicate snap-traps of the aquatic carnivorous waterwheel plant (Aldrovanda vesiculosa) with 2D and 3D imaging techniques.Westermeier AS, Hiss N, Speck T, Poppinga S.Westermeier AS, et al.Ann Bot. 2020 Oct 30;126(6):1099-1107. doi: 10.1093/aob/mcaa135.Ann Bot. 2020.PMID:32780092Free PMC article.
- Trap diversity and evolution in the family Droseraceae.Poppinga S, Hartmeyer SR, Masselter T, Hartmeyer I, Speck T.Poppinga S, et al.Plant Signal Behav. 2013 Jul;8(7):e24685. doi: 10.4161/psb.24685. Epub 2013 Apr 18.Plant Signal Behav. 2013.PMID:23603942Free PMC article.Review.
Cited by
- Biomechanics on Ultra-Sensitivity of Venus Flytrap's Micronewton Trigger Hairs.Wang K, Chen S, Bao G, Sun T, Zhang J, Chen D, Sun L, Han Z, Liu C, Wang Q.Wang K, et al.Adv Sci (Weinh). 2024 Nov;11(41):e2405544. doi: 10.1002/advs.202405544. Epub 2024 Sep 11.Adv Sci (Weinh). 2024.PMID:39258595Free PMC article.
- The cracking of Scots pine (Pinus sylvestris) cones.Horstmann M, Buchheit H, Speck T, Poppinga S.Horstmann M, et al.Front Plant Sci. 2022 Oct 18;13:982756. doi: 10.3389/fpls.2022.982756. eCollection 2022.Front Plant Sci. 2022.PMID:36330256Free PMC article.
- Digital image correlation techniques for motion analysis and biomechanical characterization of plants.Mylo MD, Poppinga S.Mylo MD, et al.Front Plant Sci. 2024 Jan 11;14:1335445. doi: 10.3389/fpls.2023.1335445. eCollection 2023.Front Plant Sci. 2024.PMID:38273955Free PMC article.Review.
- Emerging biological insights enabled by high-resolution 3D motion data: promises, perspectives and pitfalls.Provini P, Camp AL, Crandell KE.Provini P, et al.J Exp Biol. 2023 Apr 25;226(Suppl_1):jeb245138. doi: 10.1242/jeb.245138. Epub 2023 Feb 8.J Exp Biol. 2023.PMID:36752301Free PMC article.
- Mechanochemically assisted morphing of shape shifting polymers.Tang R, Gao W, Jia Y, Wang K, Datta BK, Zheng W, Zhang H, Xu Y, Lin Y, Weng W.Tang R, et al.Chem Sci. 2023 Aug 10;14(34):9207-9212. doi: 10.1039/d3sc02404k. eCollection 2023 Aug 30.Chem Sci. 2023.PMID:37655017Free PMC article.
References
- Bailey T., McPherson S., Dionaea: The Venus's Flytrap, Redfern Natural History Productions, Dorset, England: 2012.
- Schnell D. E., Carnivorous Plants of the United States and Canada, Timber Press, Portland: 2002.
- Forterre Y., Skotheim J. M., Dumais J., Mahadevan L., Nature 2005, 433, 421. - PubMed
Publication types
MeSH terms
Related information
Grants and funding
LinkOut - more resources
Full Text Sources