Metal content and kinetic properties of yeast RNA lariat debranching enzyme Dbr1
- PMID:35459748
- PMCID: PMC9202583
- DOI: 10.1261/rna.079159.122
Metal content and kinetic properties of yeast RNA lariat debranching enzyme Dbr1
Abstract
In eukaryotic cells, intron lariats produced by the spliceosome contain a 2'5' phosphodiester linkage. The RNA lariat debranching enzyme, Dbr1, is the only enzyme known to hydrolyze this bond. Dbr1 is a member of the metallophosphoesterase (MPE) family of enzymes, and recent X-ray crystal structures and biochemistry data demonstrate that Dbr1 fromEntamoeba histolytica uses combinations of Mn2+, Zn2+, and Fe2+ as enzymatic cofactors. Here, we examine the kinetic properties and metal dependence of the Dbr1 homolog fromSaccharomyces cerevisiae (yDbr1). Elemental analysis measured stoichiometric quantities of Fe and Zn in yDbr1 purified following heterologous expressionE. coli We analyzed the ability of Fe2+, Zn2+, and Mn2+ to reconstitute activity in metal-free apoenzyme. Purified yDbr1 was highly active, turning over substrate at 5.6 sec-1, and apo-yDbr1 reconstituted with Fe2+ was the most active species, turning over at 9.2 sec-1 We treated human lymphoblastoid cells with the iron-chelator deferoxamine and measured a twofold increase in cellular lariats. These data suggest that Fe is an important biological cofactor for Dbr1 enzymes.
Keywords: RNA; debranching enzyme; introns; lariats; metalloenzymes; metallophosphoesterase.
© 2022 Clark et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.
Figures





Similar articles
- Metal dependence and branched RNA cocrystal structures of the RNA lariat debranching enzyme Dbr1.Clark NE, Katolik A, Roberts KM, Taylor AB, Holloway SP, Schuermann JP, Montemayor EJ, Stevens SW, Fitzpatrick PF, Damha MJ, Hart PJ.Clark NE, et al.Proc Natl Acad Sci U S A. 2016 Dec 20;113(51):14727-14732. doi: 10.1073/pnas.1612729114. Epub 2016 Dec 6.Proc Natl Acad Sci U S A. 2016.PMID:27930312Free PMC article.
- Activation of human RNA lariat debranching enzyme Dbr1 by binding protein TTDN1 occurs though an intrinsically disordered C-terminal domain.Clark NE, Katolik A, Gallant P, Welch A, Murphy E, Buerer L, Schorl C, Naik N, Naik MT, Holloway SP, Cano K, Weintraub ST, Howard KM, Hart PJ, Jogl G, Damha MJ, Fairbrother WG.Clark NE, et al.J Biol Chem. 2023 Sep;299(9):105100. doi: 10.1016/j.jbc.2023.105100. Epub 2023 Jul 26.J Biol Chem. 2023.PMID:37507019Free PMC article.
- Crystal structure of the Entamoeba histolytica RNA lariat debranching enzyme EhDbr1 reveals a catalytic Zn2+ /Mn2+ heterobinucleation.Ransey E, Paredes E, Dey SK, Das SR, Heroux A, Macbeth MR.Ransey E, et al.FEBS Lett. 2017 Jul;591(13):2003-2010. doi: 10.1002/1873-3468.12677. Epub 2017 Jun 14.FEBS Lett. 2017.PMID:28504306Free PMC article.
- RNA Lariat Debranching Enzyme as a Retroviral and Long-Terminal-Repeat Retrotransposon Host Factor.Menees TM.Menees TM.Annu Rev Virol. 2020 Sep 29;7(1):189-202. doi: 10.1146/annurev-virology-012720-094902.Annu Rev Virol. 2020.PMID:32991267Review.
- Dbr1 functions in mRNA processing, intron turnover and human diseases.Mohanta A, Chakrabarti K.Mohanta A, et al.Biochimie. 2021 Jan;180:134-142. doi: 10.1016/j.biochi.2020.10.003. Epub 2020 Oct 8.Biochimie. 2021.PMID:33038423Review.
Cited by
- Crystal Structure of the RNA Lariat Debranching Enzyme Dbr1 with Hydrolyzed Phosphorothioate RNA Product.Clark NE, Katolik A, Welch A, Schorl C, Holloway SP, Schuermann JP, Hart PJ, Taylor AB, Damha MJ, Fairbrother WG.Clark NE, et al.Biochemistry. 2022 Dec 20;61(24):2933-2939. doi: 10.1021/acs.biochem.2c00590. Epub 2022 Dec 9.Biochemistry. 2022.PMID:36484984Free PMC article.
- Intron lariat spliceosomes convert lariats to true circles: implications for intron transposition.Ares M Jr, Igel H, Katzman S, Donohue JP.Ares M Jr, et al.Genes Dev. 2024 May 21;38(7-8):322-335. doi: 10.1101/gad.351764.124.Genes Dev. 2024.PMID:38724209Free PMC article.
- Intron-lariat spliceosomes convert lariats to true circles: implications for intron transposition.Ares M Jr, Igel H, Katzman S, Donohue JP.Ares M Jr, et al.bioRxiv [Preprint]. 2024 Mar 27:2024.03.26.586863. doi: 10.1101/2024.03.26.586863.bioRxiv. 2024.Update in:Genes Dev. 2024 May 21;38(7-8):322-335. doi: 10.1101/gad.351764.124.PMID:38585890Free PMC article.Updated.Preprint.
- Mössbauer-based molecular-level decomposition of the Saccharomyces cerevisiae ironome, and preliminary characterization of isolated nuclei.Lindahl PA, Vali SW.Lindahl PA, et al.Metallomics. 2022 Nov 1;14(11):mfac080. doi: 10.1093/mtomcs/mfac080.Metallomics. 2022.PMID:36214417Free PMC article.
References
- Benjamini Y, Hochberg Y. 1995. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc B 57: 289–300. 10.1111/j.2517-6161.1995.tb02031.x - DOI
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Molecular Biology Databases