Movatterモバイル変換


[0]ホーム

URL:


Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
Thehttps:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

NIH NLM Logo
Log inShow account info
Access keysNCBI HomepageMyNCBI HomepageMain ContentMain Navigation
pubmed logo
Advanced Clipboard
User Guide

Full text links

Nature Publishing Group full text link Nature Publishing Group
Full text links

Actions

Share

.2022 Mar;603(7902):604-609.
doi: 10.1038/s41586-022-04435-4. Epub 2022 Mar 23.

Optimal metrology with programmable quantum sensors

Affiliations

Optimal metrology with programmable quantum sensors

Christian D Marciniak et al. Nature.2022 Mar.

Abstract

Quantum sensors are an established technology that has created new opportunities for precision sensing across the breadth of science. Using entanglement for quantum enhancement will allow us to construct the next generation of sensors that can approach the fundamental limits of precision allowed by quantum physics. However, determining how state-of-the-art sensing platforms may be used to converge to these ultimate limits is an outstanding challenge. Here we merge concepts from the field of quantum information processing with metrology, and successfully implement experimentally a programmable quantum sensor operating close to the fundamental limits imposed by the laws of quantum mechanics. We achieve this by using low-depth, parametrized quantum circuits implementing optimal input states and measurement operators for a sensing task on a trapped-ion experiment. With 26 ions, we approach the fundamental sensing limit up to a factor of 1.45 ± 0.01, outperforming conventional spin-squeezing with a factor of 1.87 ± 0.03. Our approach reduces the number of averages to reach a given Allan deviation by a factor of 1.59 ± 0.06 compared with traditional methods not using entanglement-enabled protocols. We further perform on-device quantum-classical feedback optimization to 'self-calibrate' the programmable quantum sensor with comparable performance. This ability illustrates that this next generation of quantum sensor can be used without previous knowledge of the device or its noise environment.

© 2022. The Author(s), under exclusive licence to Springer Nature Limited.

PubMed Disclaimer

Similar articles

  • Approaching optimal entangling collective measurements on quantum computing platforms.
    Conlon LO, Vogl T, Marciniak CD, Pogorelov I, Yung SK, Eilenberger F, Berry DW, Santana FS, Blatt R, Monz T, Lam PK, Assad SM.Conlon LO, et al.Nat Phys. 2023;19(3):351-357. doi: 10.1038/s41567-022-01875-7. Epub 2023 Jan 12.Nat Phys. 2023.PMID:36942094Free PMC article.
  • Variational Spin-Squeezing Algorithms on Programmable Quantum Sensors.
    Kaubruegger R, Silvi P, Kokail C, van Bijnen R, Rey AM, Ye J, Kaufman AM, Zoller P.Kaubruegger R, et al.Phys Rev Lett. 2019 Dec 31;123(26):260505. doi: 10.1103/PhysRevLett.123.260505.Phys Rev Lett. 2019.PMID:31951449
  • Nonlinear atom interferometer surpasses classical precision limit.
    Gross C, Zibold T, Nicklas E, Estève J, Oberthaler MK.Gross C, et al.Nature. 2010 Apr 22;464(7292):1165-9. doi: 10.1038/nature08919. Epub 2010 Mar 31.Nature. 2010.PMID:20357767
  • Engineering Aspects of Olfaction.
    Persaud KC.Persaud KC.In: Persaud KC, Marco S, Gutiérrez-Gálvez A, editors. Neuromorphic Olfaction. Boca Raton (FL): CRC Press/Taylor & Francis; 2013. Chapter 1.In: Persaud KC, Marco S, Gutiérrez-Gálvez A, editors. Neuromorphic Olfaction. Boca Raton (FL): CRC Press/Taylor & Francis; 2013. Chapter 1.PMID:26042329Free Books & Documents.Review.
  • Quantum Plasmonic Sensors.
    Lee C, Lawrie B, Pooser R, Lee KG, Rockstuhl C, Tame M.Lee C, et al.Chem Rev. 2021 Apr 28;121(8):4743-4804. doi: 10.1021/acs.chemrev.0c01028. Epub 2021 Mar 31.Chem Rev. 2021.PMID:33787252Review.
See all similar articles

Cited by

See all "Cited by" articles

References

    1. Taylor, M. A. & Bowen, W. P. Quantum metrology and its application in biology. Phys. Rep. 615, 1–59 (2016). - DOI
    1. Wu, Y., Jelezko, F., Plenio, M. B. & Weil, T. Diamond quantum devices in biology. Angew. Chem. Int. Edn 55, 6586–6598 (2016). - DOI
    1. Rej, E., Gaebel, T., Boele, T., Waddington, D. E. & Reilly, D. J. Hyperpolarized nanodiamond with long spin-relaxation times. Nat. Commun. 6, 8459 (2015). - PubMed - DOI
    1. Frasco, M. F. & Chaniotakis, N. Semiconductor quantum dots in chemical sensors and biosensors. Sensors 9, 7266–7286 (2009). - PubMed - PMC - DOI
    1. Chen, Y.-J. et al. Single-source multiaxis cold-atom interferometer in a centimeter-scale cell. Phys. Rev. Appl. 12, 014019 (2019). - DOI

Publication types

LinkOut - more resources

Full text links
Nature Publishing Group full text link Nature Publishing Group
Cite
Send To

NCBI Literature Resources

MeSHPMCBookshelfDisclaimer

The PubMed wordmark and PubMed logo are registered trademarks of the U.S. Department of Health and Human Services (HHS). Unauthorized use of these marks is strictly prohibited.


[8]ページ先頭

©2009-2025 Movatter.jp