Acute multidrug delivery via a wearable bioreactor facilitates long-term limb regeneration and functional recovery in adultXenopus laevis
- PMID:35080969
- PMCID: PMC8791464
- DOI: 10.1126/sciadv.abj2164
Acute multidrug delivery via a wearable bioreactor facilitates long-term limb regeneration and functional recovery in adultXenopus laevis
Abstract
Limb regeneration is a frontier in biomedical science. Identifying triggers of innate morphogenetic responses in vivo to induce the growth of healthy patterned tissue would address the needs of millions of patients, from diabetics to victims of trauma. Organisms such asXenopus laevis-whose limited regenerative capacities in adulthood mirror those of humans-are important models with which to test interventions that can restore form and function. Here, we demonstrate long-term (18 months) regrowth, marked tissue repatterning, and functional restoration of an amputatedX. laevis hindlimb following a 24-hour exposure to a multidrug, pro-regenerative treatment delivered by a wearable bioreactor. Regenerated tissues composed of skin, bone, vasculature, and nerves significantly exceeded the complexity and sensorimotor capacities of untreated and control animals' hypomorphic spikes. RNA sequencing of early tissue buds revealed activation of developmental pathways such as Wnt/β-catenin, TGF-β, hedgehog, and Notch. These data demonstrate the successful "kickstarting" of endogenous regenerative pathways in a vertebrate model.
Figures






Similar articles
- Brief Local Application of Progesterone via a Wearable Bioreactor Induces Long-Term Regenerative Response in Adult Xenopus Hindlimb.Herrera-Rincon C, Golding AS, Moran KM, Harrison C, Martyniuk CJ, Guay JA, Zaltsman J, Carabello H, Kaplan DL, Levin M.Herrera-Rincon C, et al.Cell Rep. 2018 Nov 6;25(6):1593-1609.e7. doi: 10.1016/j.celrep.2018.10.010.Cell Rep. 2018.PMID:30404012Free PMC article.
- Cellular responses in the FGF10-mediated improvement of hindlimb regenerative capacity in Xenopus laevis revealed by single-cell transcriptomics.Yanagi N, Kato S, Fukazawa T, Kubo T.Yanagi N, et al.Dev Growth Differ. 2022 Aug;64(6):266-278. doi: 10.1111/dgd.12795. Epub 2022 Jun 20.Dev Growth Differ. 2022.PMID:35642106Free PMC article.
- Evidence that regenerative ability is an intrinsic property of limb cells in Xenopus.Sessions SK, Bryant SV.Sessions SK, et al.J Exp Zool. 1988 Jul;247(1):39-44. doi: 10.1002/jez.1402470106.J Exp Zool. 1988.PMID:3183582
- Limb regeneration in Xenopus laevis froglet.Suzuki M, Yakushiji N, Nakada Y, Satoh A, Ide H, Tamura K.Suzuki M, et al.ScientificWorldJournal. 2006 May 12;6 Suppl 1:26-37. doi: 10.1100/tsw.2006.325.ScientificWorldJournal. 2006.PMID:17205185Free PMC article.Review.
- Employing the biology of successful fracture repair to heal critical size bone defects.Cameron JA, Milner DJ, Lee JS, Cheng J, Fang NX, Jasiuk IM.Cameron JA, et al.Curr Top Microbiol Immunol. 2013;367:113-32. doi: 10.1007/82_2012_291.Curr Top Microbiol Immunol. 2013.PMID:23239235Review.
Cited by
- Biophysical control of plasticity and patterning in regeneration and cancer.Murugan NJ, Cariba S, Abeygunawardena S, Rouleau N, Payne SL.Murugan NJ, et al.Cell Mol Life Sci. 2023 Dec 15;81(1):9. doi: 10.1007/s00018-023-05054-6.Cell Mol Life Sci. 2023.PMID:38099951Free PMC article.Review.
- Response to comment on 'A conserved strategy for inducing appendage regeneration in moon jellyfish,Drosophila, and mice'.Li Y, Sarma AA, Lee IT, Tan FH, Abrams MJ, Condiotte ZJ, Heithe M, Raffiee M, Dabiri JO, Gold DA, Goentoro L.Li Y, et al.Elife. 2023 Jun 22;12:e85370. doi: 10.7554/eLife.85370.Elife. 2023.PMID:37347515Free PMC article.
- Unravelling the limb regeneration mechanisms of Polypedates maculatus, a sub-tropical frog, by transcriptomics.Mahapatra C, Naik P, Swain SK, Mohapatra PP.Mahapatra C, et al.BMC Genomics. 2023 Mar 16;24(1):122. doi: 10.1186/s12864-023-09205-8.BMC Genomics. 2023.PMID:36927452Free PMC article.
- Cellular signaling pathways as plastic, proto-cognitive systems: Implications for biomedicine.Mathews J, Chang AJ, Devlin L, Levin M.Mathews J, et al.Patterns (N Y). 2023 Apr 26;4(5):100737. doi: 10.1016/j.patter.2023.100737. eCollection 2023 May 12.Patterns (N Y). 2023.PMID:37223267Free PMC article.Review.
- Tail Tales: What We Have Learned About Regeneration from Xenopus Laevis Tadpoles.Lara J, Mastela C, Abd M, Pitstick L, Ventrella R.Lara J, et al.Int J Mol Sci. 2024 Oct 29;25(21):11597. doi: 10.3390/ijms252111597.Int J Mol Sci. 2024.PMID:39519148Free PMC article.Review.
References
- Ziegler-Graham K., MacKenzie E. J., Ephraim P. L., Travison T. G., Brookmeyer R., Estimating the prevalence of limb loss in the United States: 2005 to 2050. Arch. Phys. Med. Rehabil. 89, 422–429 (2008). - PubMed
- Borgens R. B., What is the role of naturally produced electric current in vertebrate regeneration and healing. Int. Rev. Cytol. 76, 245–298 (1982). - PubMed
- Leppik L., Zhihua H., Mobini S., Thottakkattumana Parameswaran V., Eischen-Loges M., Slavici A., Helbing J., Pindur L., Oliveira K. M. C., Bhavsar M. B., Hudak L., Henrich D., Barker J. H., Combining electrical stimulation and tissue engineering to treat large bone defects in a rat model. Sci. Rep. 8, 6307 (2018). - PMC - PubMed
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources