Light-Induced Reactions within Poly(4-vinyl pyridine)/Pyridine Gels: The 1,6-Polyazaacetylene Oligomers Formation
- PMID:34834017
- PMCID: PMC8621047
- DOI: 10.3390/molecules26226925
Light-Induced Reactions within Poly(4-vinyl pyridine)/Pyridine Gels: The 1,6-Polyazaacetylene Oligomers Formation
Abstract
Cyclic 6-membered aromatic compounds such as benzene and azabenzenes (pyridine, pyridazine, and pyrazine) are known to be light-sensitive, affording, in particular, the Dewar benzene type of intermediates. Pyridine is known to provide the only Dewar pyridine intermediate that undergoes reversible ring-opening. We found that irradiation of photosensitive gels prepared from poly(4-vinyl pyridine) and pyridine at 254 or 312 nm leads to pyridine ring-opening and subsequent formation of 5-amino-2,4-pentadienals. We show that this light-induced process is only partially reversible, and that the photogenerated aminoaldehyde and aminoaldehyde-pending groups undergo self-condensation to produce cross-linked, conjugated oligomers that absorb light in the visible spectrum up to the near-infrared range. Such a sequence of chemical reactions results in the formation of gel with two distinct morphologies: spheres and fiber-like matrices. To gain deeper insight into this process, we prepared poly(4-vinyl pyridine) with low molecular weight (about 2000 g/mol) and monitored the respective changes in absorption, fluorescence,1H-NMR spectra, and electrical conductivity. The conductivity of the polymer gel upon irradiation changes from ionic to electronic, indicative of a conjugated molecular wire behavior. Quantum mechanical calculations confirmed the feasibility of the proposed polycondensation process. This new polyacetylene analog has potential in thermal energy-harvesting and sensor applications.
Keywords: aromatic heterocycle; electroconducting polymer; photochemistry; pyridine.
Conflict of interest statement
The authors declare no conflict of interest. The funders had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to publish the results.
Figures









Similar articles
- Polymer Gel with Tunable Conductive Properties: A Material for Thermal Energy Harvesting.Vaganova E, Eliaz D, Leitus G, Solomonov A, Dubnikova F, Feldman Y, Rosenhek-Goldian I, Cohen SR, Shimanovich U.Vaganova E, et al.ACS Omega. 2022 Dec 13;7(51):47747-47754. doi: 10.1021/acsomega.2c05301. eCollection 2022 Dec 27.ACS Omega. 2022.PMID:36591209Free PMC article.
- Photoinduced proton transfer in a pyridine based polymer gel.Vaganova E, Wachtel E, Leitus G, Danovich D, Lesnichin S, Shenderovich IG, Limbach HH, Yitzchaik S.Vaganova E, et al.J Phys Chem B. 2010 Aug 26;114(33):10728-33. doi: 10.1021/jp104277r.J Phys Chem B. 2010.PMID:20666565
- Photoactive proton conductor: poly(4-vinyl pyridine) gel.Berestetsky N, Vaganova E, Wachtel E, Leitus G, Goldberg A, Yitzchaik S.Berestetsky N, et al.J Phys Chem B. 2008 Mar 27;112(12):3662-7. doi: 10.1021/jp711038u. Epub 2008 Mar 5.J Phys Chem B. 2008.PMID:18318532
- Erratum: Preparation of Poly(pentafluorophenyl acrylate) Functionalized SiO2 Beads for Protein Purification.[No authors listed][No authors listed]J Vis Exp. 2019 Apr 30;(146). doi: 10.3791/6328.J Vis Exp. 2019.PMID:31038480
- Synthesis and characterization of azaborepin radicals in solid neon through boron-mediated C-N bond cleavage of pyridine.Xu X, Zhu YK, Dai CM, Xu J, Jian J.Xu X, et al.Phys Chem Chem Phys. 2024 Apr 3;26(14):11048-11055. doi: 10.1039/d4cp00228h.Phys Chem Chem Phys. 2024.PMID:38528841
Cited by
- Structural, electronic, intermolecular interaction, reactivity, vibrational spectroscopy, charge transfer, Hirshfeld surface analysis, pharmacological and hydropathy plot on 5-Bromo nicotinic acid - Antiviral study (Hepatitis A, B, and C).R S, Mahalakshmi S, Kumaran S, Kadaikunnan S, Abbas G, Muthu S.R S, et al.Heliyon. 2023 Sep 7;9(9):e19965. doi: 10.1016/j.heliyon.2023.e19965. eCollection 2023 Sep.Heliyon. 2023.PMID:37809934Free PMC article.
- Polymer Gel with Tunable Conductive Properties: A Material for Thermal Energy Harvesting.Vaganova E, Eliaz D, Leitus G, Solomonov A, Dubnikova F, Feldman Y, Rosenhek-Goldian I, Cohen SR, Shimanovich U.Vaganova E, et al.ACS Omega. 2022 Dec 13;7(51):47747-47754. doi: 10.1021/acsomega.2c05301. eCollection 2022 Dec 27.ACS Omega. 2022.PMID:36591209Free PMC article.
- Novel thiazole-based cyanoacrylamide derivatives: DNA cleavage, DNA/BSA binding properties and their anticancer behaviour against colon and breast cancer cells.Barakat K, Ragheb MA, Soliman MH, Abdelmoniem AM, Abdelhamid IA.Barakat K, et al.BMC Chem. 2024 Sep 20;18(1):183. doi: 10.1186/s13065-024-01284-2.BMC Chem. 2024.PMID:39304938Free PMC article.
References
- Bryce-Smith D., Gilbert A. The Organic Photochemistry of Benzene-I. Tetrahedron. 1976;32:1309–1326. doi: 10.1016/0040-4020(76)85002-8. - DOI
- Pavlik J.W. Photoisomerization of Some Nitrogen-Containing Hetero-Aromatic Compounds. In: Horspool W., Lenci F., editors. CRC Handbook of Organic Photochemistry and Photobiology. 2nd ed. Volume 97. CRC Press LLC; Boca Raton, FL, USA: 2004. pp. 1–22.
- D’Auria M. Photochemical Isomerization of Hexatomic Heterocyclic Compounds. Curr. Org. Chem. 2021;25:1659–1685. doi: 10.2174/1385272825666210706124855. - DOI
- Freytag H., Neudert W. Einwirkung ultravioletter Strahlen auf Pyridin. (I. Mitteilung). Ein neuer Nachweis einiger primärer aromatischer Amine und des Pyridins. J. Prakt. Chem. 1932;135:15–35. doi: 10.1002/prac.19321350103. - DOI
- Joussot-Dubien J., Houdard J. Reversible photolysis of pyridine in aqueous solution. Tetrahedron Lett. 1967;8:4389–4391. doi: 10.1016/S0040-4039(01)89696-9. - DOI
LinkOut - more resources
Full Text Sources