In vivo somatic cell base editing and prime editing
- PMID:34509669
- PMCID: PMC8571176
- DOI: 10.1016/j.ymthe.2021.09.002
In vivo somatic cell base editing and prime editing
Abstract
Recent advances in genome editing technologies have magnified the prospect of single-dose cures for many genetic diseases. For most genetic disorders, precise DNA correction is anticipated to best treat patients. To install desired DNA changes with high precision, our laboratory developed base editors (BEs), which can correct the four most common single-base substitutions, and prime editors, which can install any substitution, insertion, and/or deletion over a stretch of dozens of base pairs. Compared to nuclease-dependent editing approaches that involve double-strand DNA breaks (DSBs) and often result in a large percentage of uncontrolled editing outcomes, such as mixtures of insertions and deletions (indels), larger deletions, and chromosomal rearrangements, base editors and prime editors often offer greater efficiency with fewer byproducts in slowly dividing or non-dividing cells, such as those that make up most of the cells in adult animals. Both viral and non-viral in vivo delivery methods have now been used to deliver base editors and prime editors in animal models, establishing that base editors and prime editors can serve as effective agents for in vivo therapeutic genome editing in animals. This review summarizes examples of in vivo somatic cell (post-natal) base editing and prime editing and prospects for future development.
Copyright © 2021 The American Society of Gene and Cell Therapy. Published by Elsevier Inc. All rights reserved.
Conflict of interest statement
Declaration of interests The authors have filed patent applications on genome editing technologies through the Broad Institute of MIT and Harvard. D.R.L. is a consultant and cofounder of Beam Therapeutics, Prime Medicine, Pairwise Plants, Editas Medicine, and Chroma Medicine, companies that use genome editing or genome engineering, including base editing, prime editing, and epigenetic modification.
Figures




Similar articles
- CRISPR-Cas9 DNA Base-Editing and Prime-Editing.Kantor A, McClements ME, MacLaren RE.Kantor A, et al.Int J Mol Sci. 2020 Aug 28;21(17):6240. doi: 10.3390/ijms21176240.Int J Mol Sci. 2020.PMID:32872311Free PMC article.Review.
- Off-Target Editing by CRISPR-Guided DNA Base Editors.Park S, Beal PA.Park S, et al.Biochemistry. 2019 Sep 10;58(36):3727-3734. doi: 10.1021/acs.biochem.9b00573. Epub 2019 Aug 26.Biochemistry. 2019.PMID:31433621Free PMC article.Review.
- Efficient Generation and Correction of Mutations in Human iPS Cells Utilizing mRNAs of CRISPR Base Editors and Prime Editors.Sürün D, Schneider A, Mircetic J, Neumann K, Lansing F, Paszkowski-Rogacz M, Hänchen V, Lee-Kirsch MA, Buchholz F.Sürün D, et al.Genes (Basel). 2020 May 6;11(5):511. doi: 10.3390/genes11050511.Genes (Basel). 2020.PMID:32384610Free PMC article.
- Evolution of Prime Editing Systems: Move Forward to the Treatment of Hereditary Diseases.Volodina OV, Fabrichnikova AR, Anuchina AA, Mishina OS, Lavrov AV, Smirnikhina SA.Volodina OV, et al.Curr Gene Ther. 2024;25(1):46-61. doi: 10.2174/0115665232295117240405070809.Curr Gene Ther. 2024.PMID:38623982Review.
- [CRISPR/Cas-mediated DNA base editing technology and its application in biomedicine and agriculture].Yu C, Mo J, Zhao X, Li G, Zhang X.Yu C, et al.Sheng Wu Gong Cheng Xue Bao. 2021 Sep 25;37(9):3071-3087. doi: 10.13345/j.cjb.200693.Sheng Wu Gong Cheng Xue Bao. 2021.PMID:34622618Review.Chinese.
Cited by
- Whole-brain in vivo base editing reverses behavioral changes in Mef2c-mutant mice.Li WK, Zhang SQ, Peng WL, Shi YH, Yuan B, Yuan YT, Xue ZY, Wang JC, Han WJ, Chen ZF, Shan SF, Xue BQ, Chen JL, Zhang C, Zhu SJ, Tai YL, Cheng TL, Qiu ZL.Li WK, et al.Nat Neurosci. 2024 Jan;27(1):116-128. doi: 10.1038/s41593-023-01499-x. Epub 2023 Nov 27.Nat Neurosci. 2024.PMID:38012399
- Molecular Therapeutics in Development to Treat Alzheimer's Disease.Tartaglia MC, Ingelsson M.Tartaglia MC, et al.Mol Diagn Ther. 2025 Jan;29(1):9-24. doi: 10.1007/s40291-024-00738-6. Epub 2024 Sep 24.Mol Diagn Ther. 2025.PMID:39316339Free PMC article.Review.
- Current applications and future perspective of CRISPR/Cas9 gene editing in cancer.Wang SW, Gao C, Zheng YM, Yi L, Lu JC, Huang XY, Cai JB, Zhang PF, Cui YH, Ke AW.Wang SW, et al.Mol Cancer. 2022 Feb 21;21(1):57. doi: 10.1186/s12943-022-01518-8.Mol Cancer. 2022.PMID:35189910Free PMC article.Review.
- Evolution of CRISPR/Cas Systems for Precise Genome Editing.Hryhorowicz M, Lipiński D, Zeyland J.Hryhorowicz M, et al.Int J Mol Sci. 2023 Sep 18;24(18):14233. doi: 10.3390/ijms241814233.Int J Mol Sci. 2023.PMID:37762535Free PMC article.Review.
- Precision genome editing in the eye.Suh S, Choi EH, Raguram A, Liu DR, Palczewski K.Suh S, et al.Proc Natl Acad Sci U S A. 2022 Sep 27;119(39):e2210104119. doi: 10.1073/pnas.2210104119. Epub 2022 Sep 19.Proc Natl Acad Sci U S A. 2022.PMID:36122230Free PMC article.
References
- Pyeritz, R.E., Korf, B.R., and Grody, W.W. (2019). Nature and Frequency of Genetic Disease. In Emery and Rimoin’s Principles and Practice of Medical Genetics and Genomics, Seventh Edition, B.R. Korf, R.E. Pyeritz, and W.W.Grody, eds. (Academic Press), pp. 47–51.
- Anguela X.M., High K.A. Entering the Modern Era of Gene Therapy. Annu. Rev. Med. 2019;70:273–288. - PubMed
- Nishida K., Arazoe T., Yachie N., Banno S., Kakimoto M., Tabata M., Mochizuki M., Miyabe A., Araki M., Hara K.Y. Targeted nucleotide editing using hybrid prokaryotic and vertebrate adaptive immune systems. Science. 2016;353:aaf8729. - PubMed
Publication types
MeSH terms
Substances
Related information
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical