Environmental specialization and cryptic genetic divergence in two massive coral species from the Florida Keys Reef Tract
- PMID:33894013
- DOI: 10.1111/mec.15931
Environmental specialization and cryptic genetic divergence in two massive coral species from the Florida Keys Reef Tract
Abstract
Broadcast-spawning coral species have wide geographical ranges spanning strong environmental gradients, but it is unclear how much spatially varying selection these gradients actually impose. Strong divergent selection might present a considerable barrier for demographic exchange between disparate reef habitats. We investigated whether the cross-shelf gradient is associated with spatially varying selection in two common coral species, Montastraea cavernosa and Siderastrea siderea, in the Florida Keys. To this end, we generated a de novo genome assembly for M. cavernosa and used 2bRAD to genotype 20 juveniles and 20 adults of both species from each of the three reef zones to identify signatures of selection occurring within a single generation. Unexpectedly, each species was found to be composed of four genetically distinct lineages, with gene flow between them still ongoing but highly reduced in 13.0%-54.7% of the genome. Each species includes two sympatric lineages that are only found in the deep (20 m) habitat, while the other lineages are found almost exclusively on the shallower reefs (3-10 m). The two "shallow" lineages of M. cavernosa are also specialized for either nearshore or offshore: comparison between adult and juvenile cohorts indicates that cross-shelf migrants are more than twice as likely to die before reaching adulthood than local recruits. S. siderea and M. cavernosa are among the most ecologically successful species on the Florida Keys Reef Tract, and this work offers important insight into the genomic background of divergent selection and environmental specialization that may in part explain their resilience and broad environmental range.
Keywords: Florida Keys; adaptation; coral reef; ecological genomics; speciation.
© 2021 John Wiley & Sons Ltd.
Similar articles
- Populations of the coral species Montastraea cavernosa on the Belize Barrier Reef lack vertical connectivity.Eckert RJ, Studivan MS, Voss JD.Eckert RJ, et al.Sci Rep. 2019 May 10;9(1):7200. doi: 10.1038/s41598-019-43479-x.Sci Rep. 2019.PMID:31076586Free PMC article.
- Species-specific responses to climate change and community composition determine future calcification rates of Florida Keys reefs.Okazaki RR, Towle EK, van Hooidonk R, Mor C, Winter RN, Piggot AM, Cunning R, Baker AC, Klaus JS, Swart PK, Langdon C.Okazaki RR, et al.Glob Chang Biol. 2017 Mar;23(3):1023-1035. doi: 10.1111/gcb.13481. Epub 2016 Sep 23.Glob Chang Biol. 2017.PMID:27561209
- Fine-scale environmental specialization of reef-building corals might be limiting reef recovery in the Florida Keys.Kenkel CD, Almanza AT, Matz MV.Kenkel CD, et al.Ecology. 2015 Dec;96(12):3197-212. doi: 10.1890/14-2297.1.Ecology. 2015.PMID:26909426
- Environmental impacts of dredging and other sediment disturbances on corals: a review.Erftemeijer PL, Riegl B, Hoeksema BW, Todd PA.Erftemeijer PL, et al.Mar Pollut Bull. 2012 Sep;64(9):1737-65. doi: 10.1016/j.marpolbul.2012.05.008. Epub 2012 Jun 7.Mar Pollut Bull. 2012.PMID:22682583Review.
- A geological perspective on the degradation and conservation of western Atlantic coral reefs.Kuffner IB, Toth LT.Kuffner IB, et al.Conserv Biol. 2016 Aug;30(4):706-15. doi: 10.1111/cobi.12725. Epub 2016 Apr 29.Conserv Biol. 2016.PMID:27029403Review.
Cited by
- Alphaflexivirus Genomes in Stony Coral Tissue Loss Disease-Affected, Disease-Exposed, and Disease-Unexposed Coral Colonies in the U.S. Virgin Islands.Veglia AJ, Beavers K, Van Buren EW, Meiling SS, Muller EM, Smith TB, Holstein DM, Apprill A, Brandt ME, Mydlarz LD, Correa AMS.Veglia AJ, et al.Microbiol Resour Announc. 2022 Feb 17;11(2):e0119921. doi: 10.1128/mra.01199-21. Epub 2022 Feb 17.Microbiol Resour Announc. 2022.PMID:35175123Free PMC article.
- Marine heatwaves threaten cryptic coral diversity and erode associations among coevolving partners.Starko S, Fifer JE, Claar DC, Davies SW, Cunning R, Baker AC, Baum JK.Starko S, et al.Sci Adv. 2023 Aug 11;9(32):eadf0954. doi: 10.1126/sciadv.adf0954. Epub 2023 Aug 11.Sci Adv. 2023.PMID:37566650Free PMC article.
- Cryptic diversity of shallow and mesophotic Stephanocoenia intersepta corals across Florida Keys National Marine Sanctuary.Eckert RJ, Sturm AB, Carreiro AM, Klein AM, Voss JD.Eckert RJ, et al.Heredity (Edinb). 2024 Sep;133(3):137-148. doi: 10.1038/s41437-024-00698-x. Epub 2024 Jun 27.Heredity (Edinb). 2024.PMID:38937604
- Gene expression plasticity facilitates acclimatization of a long-lived Caribbean coral across divergent reef environments.Castillo KD, Bove CB, Hughes AM, Powell ME, Ries JB, Davies SW.Castillo KD, et al.Sci Rep. 2024 Apr 3;14(1):7859. doi: 10.1038/s41598-024-57319-0.Sci Rep. 2024.PMID:38570591Free PMC article.
- Evidence for gene flow from the Gulf of Mexico to the Atlantic Ocean in bonnethead sharks (Sphyrna tiburo).Black KL, Liu K, Graham JR, Wiley TR, Gardiner JM, Macdonald C, Matz MV.Black KL, et al.Ecol Evol. 2024 Sep 22;14(9):e70334. doi: 10.1002/ece3.70334. eCollection 2024 Sep.Ecol Evol. 2024.PMID:39315299Free PMC article.
References
REFERENCES
- Aitken, S. N., & Whitlock, M. C. (2013). Assisted gene flow to facilitate local adaptation to climate change. Annual Review of Ecology, Evolution, and Systematics, 44(1), 367-388.https://doi.org/10.1146/annurev-ecolsys-110512-135747
- Allgeier, J. E., Andskog, M. A., Hensel, E., Appaldo, R., Layman, C., & Kemp, D. W. (2020). Rewiring coral: Anthropogenic nutrients shift diverse coral-symbiont nutrient and carbon interactions toward symbiotic algal dominance. Global Change Biology, 26(10), 5588-5601.https://doi.org/10.1111/gcb.15230
- Anthony, K. R. N., & Fabricius, K. E. (2000). Shifting roles of heterotrophy and autotrophy in coral energetics under varying turbidity. Journal of Experimental Marine Biology and Ecology, 252(2), 221-253.https://doi.org/10.1016/S0022-0981(00)00237-9
- Aranda, M., Li, Y., Liew, Y. J., Baumgarten, S., Simakov, O., Wilson, M. C., Piel, J., Ashoor, H., Bougouffa, S., Bajic, V. B., Ryu, T., Ravasi, T., Bayer, T., Micklem, G., Kim, H., Bhak, J., LaJeunesse, T. C., & Voolstra, C. R. (2016). Genomes of coral dinoflagellate symbionts highlight evolutionary adaptations conducive to a symbiotic lifestyle. Scientific Reports, 6(1), 39734.https://doi.org/10.1038/srep39734
- Barkley, H. C., Cohen, A. L., McCorkle, D. C., & Golbuu, Y. (2017). Mechanisms and thresholds for pH tolerance in Palau corals. Journal of Experimental Marine Biology and Ecology, 489, 7-14.https://doi.org/10.1016/j.jembe.2017.01.003
Publication types
MeSH terms
Related information
LinkOut - more resources
Full Text Sources