Rapid and High-Throughput Evaluation of Diverse Configurations of Engineered Lysins Using the VersaTile Technique
- PMID:33799561
- PMCID: PMC7998686
- DOI: 10.3390/antibiotics10030293
Rapid and High-Throughput Evaluation of Diverse Configurations of Engineered Lysins Using the VersaTile Technique
Abstract
Bacteriophage-encoded lysins are an emerging class of antibacterial enzymes based on peptidoglycan degradation. The modular composition of lysins is a hallmark feature enabling optimization of antibacterial and pharmacological properties by engineering of lysin candidates based on lysin and non-lysin modules. In this regard, the recent introduction of the VersaTile technique allows the rapid construction of large modular lysin libraries based on a premade repository of building blocks. In this study, we perform a high-throughput construction and screening of five combinatorial lysin libraries with different configurations, targetingKlebsiella pneumoniae. An elaborate analysis of the activity distribution of 940 variants and sequencing data of 74 top hits inhibiting the growth ofKlebsiella pneumoniae could be associated with specific design rules. Specific outer membrane permeabilizing peptides (OMPs) and enzymatically active domains (EADs) are significantly overrepresented among the top hits, while cell wall binding domains (CBDs) are equally represented. Especially libraries with the configuration (OMP-linker-CBD-EAD) and the inverse configuration (CBD-EAD-linker-OMP) yield the most active variants, with discernible clusters of variants that emerge above the remaining variants. The approach implemented here provides a blueprint for discovery campaigns of engineered lysins starting from libraries with different configurations and compositions.
Keywords: Klebsiella pneumoniae; VersaTile; bacteriophage; lysin; protein engineering.
Conflict of interest statement
H.G., D.G., R.L., and Y.B. are inventors on a patent application related to this work filed by Ghent University and the University of Leuven (no. WO/2018/114980, filed on 19 February 2017, published on 28 June 2018). The authors declare that they have no other competing interests.
Figures


Similar articles
- Engineering a Lysin with Intrinsic Antibacterial Activity (LysMK34) by Cecropin A Fusion Enhances Its Antibacterial Properties against Acinetobacter baumannii.Abdelkader K, Gutiérrez D, Tamés-Caunedo H, Ruas-Madiedo P, Safaan A, Khairalla AS, Gaber Y, Dishisha T, Briers Y.Abdelkader K, et al.Appl Environ Microbiol. 2022 Jan 11;88(1):e0151521. doi: 10.1128/AEM.01515-21. Epub 2021 Oct 20.Appl Environ Microbiol. 2022.PMID:34669452Free PMC article.
- A VersaTile-driven platform for rapid hit-to-lead development of engineered lysins.Gerstmans H, Grimon D, Gutiérrez D, Lood C, Rodríguez A, van Noort V, Lammertyn J, Lavigne R, Briers Y.Gerstmans H, et al.Sci Adv. 2020 Jun 3;6(23):eaaz1136. doi: 10.1126/sciadv.aaz1136. eCollection 2020 Jun.Sci Adv. 2020.PMID:32537492Free PMC article.
- Engineered Lysins With Customized Lytic Activities Against Enterococci and Staphylococci.Binte Muhammad Jai HS, Dam LC, Tay LS, Koh JJW, Loo HL, Kline KA, Goh BC.Binte Muhammad Jai HS, et al.Front Microbiol. 2020 Nov 25;11:574739. doi: 10.3389/fmicb.2020.574739. eCollection 2020.Front Microbiol. 2020.PMID:33324362Free PMC article.
- Engineered bacteriophage lysins as novel anti-infectives.Yang H, Yu J, Wei H.Yang H, et al.Front Microbiol. 2014 Oct 16;5:542. doi: 10.3389/fmicb.2014.00542. eCollection 2014.Front Microbiol. 2014.PMID:25360133Free PMC article.Review.
- Advanced engineering of third-generation lysins and formulation strategies for clinical applications.De Maesschalck V, Gutiérrez D, Paeshuyse J, Lavigne R, Briers Y.De Maesschalck V, et al.Crit Rev Microbiol. 2020 Sep;46(5):548-564. doi: 10.1080/1040841X.2020.1809346. Epub 2020 Sep 4.Crit Rev Microbiol. 2020.PMID:32886565Review.
Cited by
- Characterization of Salmonella endolysin XFII produced by recombinant Escherichia coli and its application combined with chitosan in lysing Gram-negative bacteria.Zhang S, Chang Y, Zhang Q, Yuan Y, Qi Q, Lu X.Zhang S, et al.Microb Cell Fact. 2022 Aug 23;21(1):171. doi: 10.1186/s12934-022-01894-2.Microb Cell Fact. 2022.PMID:35999567Free PMC article.
- Beyond antibiotics: phage-encoded lysins against Gram-negative pathogens.Shah S, Das R, Chavan B, Bajpai U, Hanif S, Ahmed S.Shah S, et al.Front Microbiol. 2023 Sep 8;14:1170418. doi: 10.3389/fmicb.2023.1170418. eCollection 2023.Front Microbiol. 2023.PMID:37789862Free PMC article.Review.
- Examination of yield, bacteriolytic activity and cold storage of linker deletion mutants based on endolysin S6_ORF93 derived from Staphylococcus giant bacteriophage S6.Munetomo S, Uchiyama J, Takemura-Uchiyama I, Wanganuttara T, Yamamoto Y, Tsukui T, Hagiya H, Kanamaru S, Kanda H, Matsushita O.Munetomo S, et al.PLoS One. 2024 Oct 23;19(10):e0310962. doi: 10.1371/journal.pone.0310962. eCollection 2024.PLoS One. 2024.PMID:39441843Free PMC article.
- Monomodular Pseudomonas aeruginosa phage JG004 lysozyme (Pae87) contains a bacterial surface-active antimicrobial peptide-like region and a possible substrate-binding subdomain.Vázquez R, Seoane-Blanco M, Rivero-Buceta V, Ruiz S, van Raaij MJ, García P.Vázquez R, et al.Acta Crystallogr D Struct Biol. 2022 Apr 1;78(Pt 4):435-454. doi: 10.1107/S2059798322000936. Epub 2022 Mar 4.Acta Crystallogr D Struct Biol. 2022.PMID:35362467Free PMC article.
- Structural and Biochemical Characterization of a New Phage-Encoded Muramidase, KTN6 Gp46.Sanz-Gaitero M, De Maesschalck V, Patel A, Longin H, Van Noort V, Rodriguez-Rubio L, van Ryne M, Danis-Wlodarczyk K, Drulis-Kawa Z, Mesnage S, van Raaij M, Lavigne R.Sanz-Gaitero M, et al.Phage (New Rochelle). 2024 Jun 21;5(2):53-62. doi: 10.1089/phage.2023.0040. eCollection 2024 Jun.Phage (New Rochelle). 2024.PMID:39119210
References
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources