Movatterモバイル変換


[0]ホーム

URL:


Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
Thehttps:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

NIH NLM Logo
Log inShow account info
Access keysNCBI HomepageMyNCBI HomepageMain ContentMain Navigation
pubmed logo
Advanced Clipboard
User Guide

Full text links

Atypon full text link Atypon
Full text links

Actions

.2021 Jun;235(6):655-662.
doi: 10.1177/09544119211000477. Epub 2021 Mar 8.

Cerebral aneurysm rupture status classification using statistical and machine learning methods

Affiliations

Cerebral aneurysm rupture status classification using statistical and machine learning methods

Nicolás Amigo et al. Proc Inst Mech Eng H.2021 Jun.

Abstract

Morphological characterization and fluid dynamics simulations were carried out to classify the rupture status of 71 (36 unruptured, 35 ruptured) patient specific cerebral aneurysms using a machine learning approach together with statistical techniques. Eleven morphological and six hemodynamic parameters were evaluated individually and collectively for significance as rupture status predictors. The performance of each parameter was inspected using hypothesis testing, accuracy, confusion matrix, and the area under the receiver operating characteristic curve. Overall, the size ratio exhibited the best performance, followed by the diastolic wall shear stress, and systolic wall shear stress. The prediction capability of all 17 parameters together was evaluated using eight different machine learning algorithms. The logistic regression achieved the highest accuracy (0.75), whereas the random forest had the highest area under curve value among all the classifiers (0.82), surpassing the performance exhibited by the size ratio. Hence, we propose the random forest model as a tool that can help improve the rupture status prediction of cerebral aneurysms.

Keywords: Cerebral aneurysm; hemodynamics; machine learning; morphology.

PubMed Disclaimer

MeSH terms

LinkOut - more resources

Full text links
Atypon full text link Atypon
Cite
Send To

NCBI Literature Resources

MeSHPMCBookshelfDisclaimer

The PubMed wordmark and PubMed logo are registered trademarks of the U.S. Department of Health and Human Services (HHS). Unauthorized use of these marks is strictly prohibited.


[8]ページ先頭

©2009-2026 Movatter.jp