Biological Safety Evaluation and Surface Modification of Biocompatible Ti-15Zr-4Nb Alloy
- PMID:33557312
- PMCID: PMC7914436
- DOI: 10.3390/ma14040731
Biological Safety Evaluation and Surface Modification of Biocompatible Ti-15Zr-4Nb Alloy
Abstract
We performed biological safety evaluation tests of three Ti-Zr alloys under accelerated extraction condition. We also conducted histopathological analysis of long-term implantation of pure V, Al, Ni, Zr, Nb, and Ta metals as well as Ni-Ti and high-V-containing Ti-15V-3Al-3Sn alloys in rats. The effect of the dental implant (screw) shape on morphometrical parameters was investigated using rabbits. Moreover, we examined the maximum pullout properties of grit-blasted Ti-Zr alloys after their implantation in rabbits. The biological safety evaluation tests of three Ti-Zr alloys (Ti-15Zr-4Nb, Ti-15Zr-4Nb-1Ta, and Ti-15Zr-4Nb-4Ta) showed no adverse (negative) effects of either normal or accelerated extraction. No bone was formed around the pure V and Ni implants. The Al, Zr, Nb, and Ni-Ti implants were surrounded by new bone. The new bone formed around Ti-Ni and high-V-containing Ti alloys tended to be thinner than that formed around Ti-Zr and Ti-6Al-4V alloys. The rate of bone formation on the threaded portion in the Ti-15Zr-4Nb-4Ta dental implant was the same as that on a smooth surface. The maximum pullout loads of the grit- and shot-blasted Ti-Zr alloys increased linearly with implantation period in rabbits. The pullout load of grit-blasted Ti-Zr alloy rods was higher than that of shot-blasted ones. The surface roughness (Ra) and area ratio of residual Al2O3 particles of the Ti-15Zr-4Nb alloy surface grit-blasted with Al2O3 particles were the same as those of the grit-blasted Alloclassic stem surface. It was clarified that the grit-blasted Ti-15Zr-4Nb alloy could be used for artificial hip joint stems.
Keywords: ISO 10993 series; Ti–15Zr–4Nb alloy; accelerated extraction; biological safety evaluation; grit blasting; maximum pullout load; morphometrical parameters; osteocompatibility.
Conflict of interest statement
The authors declare no conflict of interest.
Figures









Similar articles
- Dental Implants: Modern Materials and Methods of Their Surface Modification.Sotova C, Yanushevich O, Kriheli N, Grigoriev S, Evdokimov V, Kramar O, Nozdrina M, Peretyagin N, Undritsova N, Popelyshkin E, Peretyagin P.Sotova C, et al.Materials (Basel). 2023 Nov 27;16(23):7383. doi: 10.3390/ma16237383.Materials (Basel). 2023.PMID:38068127Free PMC article.Review.
- Comparisons of immersion and electrochemical properties of highly biocompatible Ti-15Zr-4Nb-4Ta alloy and other implantable metals for orthopedic implants.Okazaki Y, Nagata H.Okazaki Y, et al.Sci Technol Adv Mater. 2012 Dec 13;13(6):064216. doi: 10.1088/1468-6996/13/6/064216. eCollection 2012 Dec.Sci Technol Adv Mater. 2012.PMID:27877543Free PMC article.
- Characterization of Oxide Film of Implantable Metals by Electrochemical Impedance Spectroscopy.Okazaki Y.Okazaki Y.Materials (Basel). 2019 Oct 23;12(21):3466. doi: 10.3390/ma12213466.Materials (Basel). 2019.PMID:31652695Free PMC article.
- Surface analysis of Ti-15Zr-4Nb-4Ta alloy after implantation in rat tibia.Okazak Y, Nishimura E, Nakada H, Kobayashi K.Okazak Y, et al.Biomaterials. 2001 Mar;22(6):599-607. doi: 10.1016/s0142-9612(00)00221-0.Biomaterials. 2001.PMID:11219725
- A review in titanium-zirconium binary alloy for use in dental implants: Is there an ideal Ti-Zr composing ratio?Zhao Q, Ueno T, Wakabayashi N.Zhao Q, et al.Jpn Dent Sci Rev. 2023 Dec;59:28-37. doi: 10.1016/j.jdsr.2023.01.002. Epub 2023 Feb 7.Jpn Dent Sci Rev. 2023.PMID:36819742Free PMC article.Review.
Cited by
- Thermodynamic Assessment of Bio-Oriented Ti-Ta-Sn System.Yan L, Peng Y, Li T, Yan L, He S, Xu T.Yan L, et al.Materials (Basel). 2021 Mar 23;14(6):1568. doi: 10.3390/ma14061568.Materials (Basel). 2021.PMID:33806883Free PMC article.
- Tailoring a Low Young Modulus for a Beta Titanium Alloy by Combining Severe Plastic Deformation with Solution Treatment.Nocivin A, Raducanu D, Vasile B, Trisca-Rusu C, Cojocaru EM, Dan A, Irimescu R, Cojocaru VD.Nocivin A, et al.Materials (Basel). 2021 Jun 22;14(13):3467. doi: 10.3390/ma14133467.Materials (Basel). 2021.PMID:34206466Free PMC article.
- Osseointegration of Tantalum Trabecular Metal in Titanium Dental Implants: Histological and Micro-CT Study.Al Deeb M, Aldosari AA, Anil S.Al Deeb M, et al.J Funct Biomater. 2023 Jul 6;14(7):355. doi: 10.3390/jfb14070355.J Funct Biomater. 2023.PMID:37504850Free PMC article.
- Dental Implants: Modern Materials and Methods of Their Surface Modification.Sotova C, Yanushevich O, Kriheli N, Grigoriev S, Evdokimov V, Kramar O, Nozdrina M, Peretyagin N, Undritsova N, Popelyshkin E, Peretyagin P.Sotova C, et al.Materials (Basel). 2023 Nov 27;16(23):7383. doi: 10.3390/ma16237383.Materials (Basel). 2023.PMID:38068127Free PMC article.Review.
- Mechanical Performance of Artificial Hip Stems Manufactured by Hot Forging and Selective Laser Melting Using Biocompatible Ti-15Zr-4Nb Alloy.Okazaki Y, Mori J.Okazaki Y, et al.Materials (Basel). 2021 Feb 4;14(4):732. doi: 10.3390/ma14040732.Materials (Basel). 2021.PMID:33557357Free PMC article.
References
- Steinemann S.G. In: Compatibility of Titanium in Soft and Hard Tissue–The Ultimate is Osseointegration. Stallforth H., Revell P., editors. Materials for medical engineering; Wiley–VCH; Weinheim, Germany: 1999. pp. 199–203.
- Fini M., Aldini N.N., Torricelli P., Giavaresi G., Borsari V., Lenger H., Bernauer J., Giardino R., Chiesa R., Cigada A. A new austenitic stainless steel with negligible nickel content: An in vitro and in vivo comparative investigation. Biomaterials. 2003;24:4929–4939. doi: 10.1016/S0142-9612(03)00416-2. - DOI - PubMed
- Lee T., Lee S., Kim I.-S., Moon Y.H., Kim H.S., Park C.H. Breaking the limit of Young’s modulus in low–cost Ti–Nb–Zr alloy for biomedical implant applications. J. Alloys Compd. 2020;828:154401. doi: 10.1016/j.jallcom.2020.154401. - DOI
LinkOut - more resources
Full Text Sources
Other Literature Sources
Miscellaneous