Movatterモバイル変換


[0]ホーム

URL:


Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
Thehttps:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

NIH NLM Logo
Log inShow account info
Access keysNCBI HomepageMyNCBI HomepageMain ContentMain Navigation
pubmed logo
Advanced Clipboard
User Guide

Full text links

Springer full text link Springer
Full text links

Actions

Share

Review
.2021:1297:65-82.
doi: 10.1007/978-3-030-61663-2_5.

Sleep-Wake Neurobiology

Affiliations
Review

Sleep-Wake Neurobiology

Giancarlo Vanini et al. Adv Exp Med Biol.2021.

Abstract

Sleep and wakefulness are complex, tightly regulated behaviors that occur in virtually all animals. With recent exciting developments in neuroscience methodologies such as optogenetics, chemogenetics, and cell-specific calcium imaging technology, researchers can advance our understanding of how discrete neuronal groups precisely modulate states of sleep and wakefulness. In this chapter, we provide an overview of key neurotransmitter systems, neurons, and circuits that regulate states of sleep and wakefulness. We also describe long-standing models for the regulation of sleep/wake and non-rapid eye movement/rapid eye movement cycling. We contrast previous knowledge derived from classic approaches such as brain stimulation, lesions, cFos expression, and single-unit recordings, with emerging data using the newest technologies. Our understanding of neural circuits underlying the regulation of sleep and wakefulness is rapidly evolving, and this knowledge is critical for our field to elucidate the enigmatic function(s) of sleep.

Keywords: Acetylcholine; Activating systems; Circadian; Dopamine; EEG; Histamine; Hypocretin; Local sleep; MCH; Norepinephrine; Serotonin; Sleep.

PubMed Disclaimer

Similar articles

See all similar articles

Cited by

See all "Cited by" articles

References

    1. Abel T, Havekes R, Saletin JM, Walker MP (2013) Sleep, plasticity and memory from molecules to whole-brain networks. Curr Biol 23:R774–R788 - PubMed - PMC - DOI
    1. Adamantidis AR, Zhang F, Aravanis AM, Deisseroth K, de Lecea L (2007) Neural substrates of awakening probed with optogenetic control of hypocretin neurons. Nature 450:420–424 - PubMed - PMC - DOI
    1. Alam MA, Kostin A, Siegel J, McGinty D, Szymusiak R, Alam MN (2018) Characteristics of sleep-active neurons in the medullary parafacial zone in rats. Sleep 41
    1. Altman NG, Izci-Balserak B, Schopfer E, Jackson N, Rattanaumpawan P, Gehrman PR, Patel NP, Grandner MA (2012) Sleep duration versus sleep insufficiency as predictors of cardiometabolic health outcomes. Sleep Med 13:1261–1270 - PubMed - PMC - DOI
    1. Anaclet C, De Luca R, Venner A, Malyshevskaya O, Lazarus M, Arrigoni E, Fuller PM (2018) Genetic activation, inactivation, and deletion reveal a limited and nuanced role for Somatostatin-containing basal forebrain neurons in behavioral state control. J Neurosci 38:5168–5181 - PubMed - PMC - DOI

Publication types

MeSH terms

LinkOut - more resources

Full text links
Springer full text link Springer
Cite
Send To

NCBI Literature Resources

MeSHPMCBookshelfDisclaimer

The PubMed wordmark and PubMed logo are registered trademarks of the U.S. Department of Health and Human Services (HHS). Unauthorized use of these marks is strictly prohibited.


[8]ページ先頭

©2009-2025 Movatter.jp