Complete Osseointegration of a Retrieved 3-D Printed Porous Titanium Cervical Cage
- PMID:33330602
- PMCID: PMC7732662
- DOI: 10.3389/fsurg.2020.526020
Complete Osseointegration of a Retrieved 3-D Printed Porous Titanium Cervical Cage
Abstract
Introduction: Porous 3D-printed titanium has only recently been introduced for spinal applications. Evidence around its use is currently limited to animal studies and only few human case series. This study describes the histological findings of a retrieved EIT cervical cage, explanted 2 years after insertion.Materials and Methods: The patient underwent a double level C4/C5 & C5/C6 anterior cervical decompression using EIT cervical cages without an anterior plate. Two years later the C6/7 level degenerated and began to cause myelopathic symptoms. In order to address the kyphotic imbalance of the cervical spine and fix the C6/7 level, the surgeon decided to remove the C5/6 cervical cage and bridge the fusion from C4 to C7 inclusive. The retrieved cage was histologically evaluated for bone ingrowth and signs of inflammation.Results: MRI demonstrated spinal canal stenosis at C6/C7. Plain radiographs confirmed well-integrated cervical cages at 2 years postoperative. The peroperative surgical need to use a chisel to remove the implant at C5/C6 reconfirmed the solid fusion of the segment. Macroscopically white tissue, indicative of bone, was present at both superior and inferior surfaces of the explanted specimen. Histological evaluation revealed complete osseointegration of the 5 mm high EIT Cellular Titanium® cervical cage, displaying mature lamellar bone in combination with bone marrow throughout the cage. Furthermore, a pattern of trabecular bone apposition (without fibrous tissue interface) and physiological remodeling activity was observed directly on the cellular titanium scaffold.Conclusion: This histological retrieval study of a radiologically fused cervical EIT cage clearly demonstrates complete osseointegration within a 2-year time frame. The scaffold exhibits a bone in growth pattern and maturation of bone tissue similar of what has been demonstrated in animal studies evaluating similar porous titanium implants. The complete osseointegration throughout the cage indicates physiological loading conditions even in the central part of the cage. This pattern suggests the absence, or at least the minimization, of stress-shielding in this type of porous titanium cage.
Keywords: 3d printed titanium implant; bone ingrowth spinal cage; cervical spine fusion; osseointegration; porous titanium alloy.
Copyright © 2020 van den Brink and Lamerigts.
Conflict of interest statement
The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.
Figures







Similar articles
- Bony ingrowth potential of 3D-printed porous titanium alloy: a direct comparison of interbody cage materials in an in vivo ovine lumbar fusion model.McGilvray KC, Easley J, Seim HB, Regan D, Berven SH, Hsu WK, Mroz TE, Puttlitz CM.McGilvray KC, et al.Spine J. 2018 Jul;18(7):1250-1260. doi: 10.1016/j.spinee.2018.02.018. Epub 2018 Feb 26.Spine J. 2018.PMID:29496624Free PMC article.
- Choice of Spinal Interbody Fusion Cage Material and Design Influences Subsidence and Osseointegration Performance.Fogel G, Martin N, Williams GM, Unger J, Yee-Yanagishita C, Pelletier M, Walsh W, Peng Y, Jekir M.Fogel G, et al.World Neurosurg. 2022 Jun;162:e626-e634. doi: 10.1016/j.wneu.2022.03.087. Epub 2022 Mar 26.World Neurosurg. 2022.PMID:35346883
- Effect of porous orthopaedic implant material and structure on load sharing with simulated bone ingrowth: A finite element analysis comparing titanium and PEEK.Carpenter RD, Klosterhoff BS, Torstrick FB, Foley KT, Burkus JK, Lee CSD, Gall K, Guldberg RE, Safranski DL.Carpenter RD, et al.J Mech Behav Biomed Mater. 2018 Apr;80:68-76. doi: 10.1016/j.jmbbm.2018.01.017.J Mech Behav Biomed Mater. 2018.PMID:29414477Free PMC article.
- Osseointegration of titanium, titanium alloy and zirconia dental implants: current knowledge and open questions.Bosshardt DD, Chappuis V, Buser D.Bosshardt DD, et al.Periodontol 2000. 2017 Feb;73(1):22-40. doi: 10.1111/prd.12179.Periodontol 2000. 2017.PMID:28000277Review.
- Basic scientific considerations in total disc arthroplasty.Cunningham BW.Cunningham BW.Spine J. 2004 Nov-Dec;4(6 Suppl):219S-230S. doi: 10.1016/j.spinee.2004.07.015.Spine J. 2004.PMID:15541670Review.
Cited by
- [Research progress on three-dimensional printed interbody fusion cage].Gou C, Zhang Y, Nie G, He Y, Guan T.Gou C, et al.Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2021 Oct 25;38(5):1018-1027. doi: 10.7507/1001-5515.202104066.Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2021.PMID:34713671Free PMC article.Chinese.
- Histological Processing of CAD/CAM Titanium Scaffold after Long-Term Failure in Cranioplasty.Fischer H, Steffen C, Schmidt-Bleek K, Duda GN, Heiland M, Rendenbach C, Raguse JD.Fischer H, et al.Materials (Basel). 2022 Jan 27;15(3):982. doi: 10.3390/ma15030982.Materials (Basel). 2022.PMID:35160928Free PMC article.
- An overview of 3D printed metal implants in orthopedic applications: Present and future perspectives.Wu Y, Liu J, Kang L, Tian J, Zhang X, Hu J, Huang Y, Liu F, Wang H, Wu Z.Wu Y, et al.Heliyon. 2023 Jun 29;9(7):e17718. doi: 10.1016/j.heliyon.2023.e17718. eCollection 2023 Jul.Heliyon. 2023.PMID:37456029Free PMC article.Review.
- Mechanical performance of porous biomimetic intervertebral body fusion devices: an in vitro biomechanical study.Tsuang FY, Li MJ, Chu PH, Tsou NT, Sun JS.Tsuang FY, et al.J Orthop Surg Res. 2023 Jan 30;18(1):71. doi: 10.1186/s13018-023-03556-4.J Orthop Surg Res. 2023.PMID:36717827Free PMC article.
- Subsidence Rates Associated With Porous 3D-Printed Versus Solid Titanium Cages in Transforaminal Lumbar Interbody Fusion.Toop N, Dhaliwal J, Grossbach A, Gibbs D, Reddy N, Keister A, Mallory N, Xu D, Viljoen S.Toop N, et al.Global Spine J. 2024 Sep;14(7):1889-1898. doi: 10.1177/21925682231157762. Epub 2023 Feb 14.Global Spine J. 2024.PMID:36786680Free PMC article.
References
- Devine D, Arens D, Burelli S, Bloch HR, Boure L. In-vivo evaluation of the osseointegration of new highly porous Trabecular Titanium™. Orthop Proc. (2012) 94-B:201.
- Olivares-Navarrete R, Gittens RA, Schneider JM, Hyzy SL, Haithcock DA, Ullrich PF, et al. . Osteoblasts exhibit a more differentiated phenotype and increased bone morphogenetic protein production on titanium alloy substrates than on poly-ether-ether-ketone. Spine J. (2012) 12:265–72. 10.1016/j.spinee.2012.02.002 - DOI - PMC - PubMed
- Olivares-Navarrete R, Hyzy S, Slosar P, Schneider J, Schwartz Z, Boyan B. Implant materials generate different peri-implant inflammatory factors: poly-ether-ether-ketone promotes fibrosis and microtextured titanium promotes osteogenic factors. Spine. (2015) 40:399–404. 10.1097/BRS.0000000000000778 - DOI - PMC - PubMed
Related information
LinkOut - more resources
Full Text Sources
Research Materials
Miscellaneous