Advances in imaging for lung emphysema
- PMID:33313212
- PMCID: PMC7723580
- DOI: 10.21037/atm.2020.04.44
Advances in imaging for lung emphysema
Abstract
Lung emphysema represents a major public health burden and still accounts for five percent of all deaths worldwide. Hence, it is essential to further understand this disease in order to develop effective diagnostic and therapeutic strategies. Lung emphysema is an irreversible enlargement of the airways distal to the terminal bronchi (i.e., the alveoli) due to the destruction of the alveolar walls. The two most important causes of emphysema are (I) smoking and (II) α1-antitrypsin-deficiency. In the former lung emphysema is predominant in the upper lung parts, the latter is characterized by a predominance in the basal areas of the lungs. Since quantification and evaluation of the distribution of lung emphysema is crucial in treatment planning, imaging plays a central role. Imaging modalities in lung emphysema are manifold: computed tomography (CT) imaging is nowadays the gold standard. However, emerging imaging techniques like dynamic or functional magnetic resonance imaging (MRI), scintigraphy and lately also the implementation of radiomics and artificial intelligence are more and more diffused in the evaluation, diagnosis and quantification of lung emphysema. The aim of this review is to shortly present the different subtypes of lung emphysema, to give an overview on prediction and risk assessment in emphysematous disease and to discuss not only the traditional, but also the new imaging techniques for diagnosis, quantification and evaluation of lung emphysema.
Keywords: Emphysema; chronic obstructive pulmonary disease (COPD); imaging.
2020 Annals of Translational Medicine. All rights reserved.
Conflict of interest statement
Conflicts of Interest: Both authors have completed the ICMJE uniform disclosure form (available at http://dx.doi.org/10.21037/atm.2020.04.44). The authors have no conflicts of interest to declare.
Figures







Similar articles
- Regional Heterogeneity of Chronic Obstructive Pulmonary Disease Phenotypes: Pulmonary (3)He Magnetic Resonance Imaging and Computed Tomography.Pike D, Kirby M, Eddy RL, Guo F, Capaldi DP, Ouriadov A, McCormack DG, Parraga G.Pike D, et al.COPD. 2016 Oct;13(5):601-9. doi: 10.3109/15412555.2015.1123682. Epub 2016 Jan 20.COPD. 2016.PMID:26788765
- Similarities in the Computed Tomography Appearance in α1-Antitrypsin Deficiency and Smoking-Related Chronic Obstructive Pulmonary Disease in a Smoking Collective.Konietzke P, Jobst B, Wagner WL, Jarosch I, Graber R, Kenn K, Kauczor HU, Wielpütz MO.Konietzke P, et al.Respiration. 2018;96(3):231-239. doi: 10.1159/000489177. Epub 2018 Jun 25.Respiration. 2018.PMID:29940576
- Pulmonary3He Magnetic Resonance Imaging Biomarkers of Regional Airspace Enlargement in Alpha-1 Antitrypsin Deficiency.Lessard E, Young HM, Bhalla A, Pike D, Sheikh K, McCormack DG, Ouriadov A, Parraga G.Lessard E, et al.Acad Radiol. 2017 Nov;24(11):1402-1411. doi: 10.1016/j.acra.2017.05.008. Epub 2017 Jun 20.Acad Radiol. 2017.PMID:28645458
- [Imaging of emphysema].Grosse C, Bankier A.Grosse C, et al.Radiologe. 2007 May;47(5):401-6. doi: 10.1007/s00117-006-1459-3.Radiologe. 2007.PMID:17225184Review.German.
- Early Diagnosis and Real-Time Monitoring of Regional Lung Function Changes to Prevent Chronic Obstructive Pulmonary Disease Progression to Severe Emphysema.Jung T, Vij N.Jung T, et al.J Clin Med. 2021 Dec 12;10(24):5811. doi: 10.3390/jcm10245811.J Clin Med. 2021.PMID:34945107Free PMC article.Review.
Cited by
- Association between visual emphysema and lung nodules on low-dose CT scan in a Chinese Lung Cancer Screening Program (Nelcin-B3).Yang X, Dorrius MD, Jiang W, Nie Z, Vliegenthart R, Groen HJM, Heuvelmans MA, Sidorenkov G, Vonder M, Ye Z, de Bock GH.Yang X, et al.Eur Radiol. 2022 Dec;32(12):8162-8170. doi: 10.1007/s00330-022-08884-3. Epub 2022 Jun 9.Eur Radiol. 2022.PMID:35678862Free PMC article.
- [Using Artificial Intelligence Software for Diagnosing Emphysema and Interstitial Lung Disease].Paik SH, Jin GY.Paik SH, et al.J Korean Soc Radiol. 2024 Jul;85(4):714-726. doi: 10.3348/jksr.2024.0050. Epub 2024 Jul 30.J Korean Soc Radiol. 2024.PMID:39130780Free PMC article.Review.Korean.
- Development of machine learning model to predict pulmonary function with low-dose CT-derived parameter response mapping in a community-based chest screening cohort.Zhou X, Pu Y, Zhang D, Guan Y, Lu Y, Zhang W, Fu CC, Fang Q, Zhang H, Liu S, Fan L.Zhou X, et al.J Appl Clin Med Phys. 2023 Nov;24(11):e14171. doi: 10.1002/acm2.14171. Epub 2023 Oct 2.J Appl Clin Med Phys. 2023.PMID:37782241Free PMC article.
- Pulmonary Emphysema Regional Distribution and Extent Assessed by Chest Computed Tomography Is Associated With Pulmonary Function Impairment in Patients With COPD.Gomes P, Bastos HNE, Carvalho A, Lobo A, Guimarães A, Rodrigues RS, Zin WA, Carvalho ARS.Gomes P, et al.Front Med (Lausanne). 2021 Sep 23;8:705184. doi: 10.3389/fmed.2021.705184. eCollection 2021.Front Med (Lausanne). 2021.PMID:34631729Free PMC article.
- Artificial intelligence in COPD CT images: identification, staging, and quantitation.Wu Y, Xia S, Liang Z, Chen R, Qi S.Wu Y, et al.Respir Res. 2024 Aug 22;25(1):319. doi: 10.1186/s12931-024-02913-z.Respir Res. 2024.PMID:39174978Free PMC article.Review.
References
Publication types
Related information
LinkOut - more resources
Full Text Sources