Movatterモバイル変換


[0]ホーム

URL:


Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
Thehttps:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

NIH NLM Logo
Log inShow account info
Access keysNCBI HomepageMyNCBI HomepageMain ContentMain Navigation
pubmed logo
Advanced Clipboard
User Guide

Full text links

Nature Publishing Group full text link Nature Publishing Group
Full text links

Actions

.2020 Dec;588(7838):445-449.
doi: 10.1038/s41586-020-3011-4. Epub 2020 Dec 9.

Enigmatic dinosaur precursors bridge the gap to the origin of Pterosauria

Affiliations

Enigmatic dinosaur precursors bridge the gap to the origin of Pterosauria

Martín D Ezcurra et al. Nature.2020 Dec.

Abstract

Pterosaurs were the first vertebrates to evolve powered flight1 and comprised one of the main evolutionary radiations in terrestrial ecosystems of the Mesozoic era (approximately 252-66 million years ago), but their origin has remained an unresolved enigma in palaeontology since the nineteenth century2-4. These flying reptiles have been hypothesized to be the close relatives of a wide variety of reptilian clades, including dinosaur relatives2-8, and there is still a major morphological gap between those forms and the oldest, unambiguous pterosaurs from the Upper Triassic series. Here, using recent discoveries of well-preserved cranial remains, microcomputed tomography scans of fragile skull bones (jaws, skull roofs and braincases) and reliably associated postcrania, we demonstrate that lagerpetids-a group of cursorial, non-volant dinosaur precursors-are the sister group of pterosaurs, sharing numerous synapomorphies across the entire skeleton. This finding substantially shortens the temporal and morphological gap between the oldest pterosaurs and their closest relatives and simultaneously strengthens the evidence that pterosaurs belong to the avian line of archosaurs. Neuroanatomical features related to the enhanced sensory abilities of pterosaurs9 are already present in lagerpetids, which indicates that these features evolved before flight. Our evidence illuminates the first steps of the assembly of the pterosaur body plan, whose conquest of aerial space represents a remarkable morphofunctional innovation in vertebrate evolution.

PubMed Disclaimer

Comment in

References

    1. Padian, K. The origins and aerodynamics of flight in extinct vertebrates. Palaeontology 28, 413–433 (1985).
    1. Padian, K. in Third Symposium on Mesozoic Terrestrial Ecosystems: Short Papers (eds Reif, W.-E. & Westphal, F.) 163–166 (Atempto, 1984).
    1. Sereno, P. C. Basal archosaurs: phylogenetic relationships and functional implications. Soc. Vertebr. Paleontol. Mem. 2, 1–53 (1991). - DOI
    1. Benton, M. J. Scleromochlus taylori and the origin of dinosaurs and pterosaurs. Phil. Trans. R. Soc. Lond. B 354, 1423–1446 (1999). - DOI
    1. Gauthier, J. A. Saurischian monophyly and the origin of birds. Mem. Calif. Acad. Sci. 8, 1–55 (1986).

Publication types

MeSH terms

LinkOut - more resources

Full text links
Nature Publishing Group full text link Nature Publishing Group
Cite
Send To

NCBI Literature Resources

MeSHPMCBookshelfDisclaimer

The PubMed wordmark and PubMed logo are registered trademarks of the U.S. Department of Health and Human Services (HHS). Unauthorized use of these marks is strictly prohibited.


[8]ページ先頭

©2009-2026 Movatter.jp