Nanoscale Viscosity of Cytoplasm Is Conserved in Human Cell Lines
- PMID:32787203
- PMCID: PMC7450658
- DOI: 10.1021/acs.jpclett.0c01748
Nanoscale Viscosity of Cytoplasm Is Conserved in Human Cell Lines
Abstract
Metabolic reactions in living cells are limited by diffusion of reagents in the cytoplasm. Any attempt to quantify the kinetics of biochemical reactions in the cytosol should be preceded by careful measurements of the physical properties of the cellular interior. The cytoplasm is a complex, crowded fluid characterized by effective viscosity dependent on its structure at a nanoscopic length scale. In this work, we present and validate the model describing the cytoplasmic nanoviscosity, based on measurements in seven human cell lines, for nanoprobes ranging in diameters from 1 to 150 nm. Irrespective of cell line origin (epithelial-mesenchymal, cancerous-noncancerous, male-female, young-adult), we obtained a similar dependence of the viscosity on the size of the nanoprobes, with characteristic length-scales of 20 ± 11 nm (hydrodynamic radii of major crowders in the cytoplasm) and 4.6 ± 0.7 nm (radii of intercrowder gaps). Moreover, we revealed that the cytoplasm behaves as a liquid for length scales smaller than 100 nm and as a physical gel for larger length scales.
Conflict of interest statement
The authors declare no competing financial interest.
Figures





Similar articles
- Apparent Anomalous Diffusion in the Cytoplasm of Human Cells: The Effect of Probes' Polydispersity.Kalwarczyk T, Kwapiszewska K, Szczepanski K, Sozanski K, Szymanski J, Michalska B, Patalas-Krawczyk P, Duszynski J, Holyst R.Kalwarczyk T, et al.J Phys Chem B. 2017 Oct 26;121(42):9831-9837. doi: 10.1021/acs.jpcb.7b07158. Epub 2017 Oct 13.J Phys Chem B. 2017.PMID:28956920
- Comparative analysis of viscosity of complex liquids and cytoplasm of mammalian cells at the nanoscale.Kalwarczyk T, Ziebacz N, Bielejewska A, Zaboklicka E, Koynov K, Szymański J, Wilk A, Patkowski A, Gapiński J, Butt HJ, Hołyst R.Kalwarczyk T, et al.Nano Lett. 2011 May 11;11(5):2157-63. doi: 10.1021/nl2008218. Epub 2011 Apr 22.Nano Lett. 2011.PMID:21513331
- Motion of nanoprobes in complex liquids within the framework of the length-scale dependent viscosity model.Kalwarczyk T, Sozanski K, Ochab-Marcinek A, Szymanski J, Tabaka M, Hou S, Holyst R.Kalwarczyk T, et al.Adv Colloid Interface Sci. 2015 Sep;223:55-63. doi: 10.1016/j.cis.2015.06.007. Epub 2015 Jul 10.Adv Colloid Interface Sci. 2015.PMID:26189602Review.
- Size-selective molecular transport through silica colloidal nanopores.Ignacio-de Leon PA, Zharov I.Ignacio-de Leon PA, et al.Chem Commun (Camb). 2011 Jan 7;47(1):553-5. doi: 10.1039/c0cc02101f. Epub 2010 Nov 24.Chem Commun (Camb). 2011.PMID:21103608
- Cytoarchitecture and physical properties of cytoplasm: volume, viscosity, diffusion, intracellular surface area.Luby-Phelps K.Luby-Phelps K.Int Rev Cytol. 2000;192:189-221. doi: 10.1016/s0074-7696(08)60527-6.Int Rev Cytol. 2000.PMID:10553280Review.
Cited by
- Living Cell as a Self-Synchronized Chemical Reactor.Hołyst R, Bubak G, Kalwarczyk T, Kwapiszewska K, Michalski J, Pilz M.Hołyst R, et al.J Phys Chem Lett. 2024 Apr 4;15(13):3559-3570. doi: 10.1021/acs.jpclett.4c00190. Epub 2024 Mar 25.J Phys Chem Lett. 2024.PMID:38526849Free PMC article.Review.
- Quantitative Methodologies to Dissect Immune Cell Mechanobiology.Pfannenstill V, Barbotin A, Colin-York H, Fritzsche M.Pfannenstill V, et al.Cells. 2021 Apr 9;10(4):851. doi: 10.3390/cells10040851.Cells. 2021.PMID:33918573Free PMC article.Review.
- Comparison of translational and rotational modes towards passive rheology of the cytoplasm of MCF-7 cells using optical tweezers.Roy S, Vaippully R, Lokesh M, Nalupurackal G, Edwina P, Bajpai S, Roy B.Roy S, et al.Front Phys. 2023 Jan 9;10:1099958. doi: 10.3389/fphy.2022.1099958.Front Phys. 2023.PMID:36685106Free PMC article.
- Formation of Highly Emissive Anthracene Excimers for Aggregation-Induced Emission/Self-Assembly Directed (Bio)imaging.Pacheco-Liñán PJ, Alonso-Moreno C, Ocaña A, Ripoll C, García-Gil E, Garzón-Ruíz A, Herrera-Ochoa D, Blas-Gómez S, Cohen B, Bravo I.Pacheco-Liñán PJ, et al.ACS Appl Mater Interfaces. 2023 Sep 27;15(38):44786-44795. doi: 10.1021/acsami.3c10823. Epub 2023 Sep 12.ACS Appl Mater Interfaces. 2023.PMID:37699547Free PMC article.
- Herpes simplex virus type-1 cVAC formation in neuronal cells is mediated by dynein motor function and glycoprotein retrieval from the plasma membrane.White S, Roller R.White S, et al.J Virol. 2024 Jul 23;98(7):e0071324. doi: 10.1128/jvi.00713-24. Epub 2024 Jun 20.J Virol. 2024.PMID:38899931Free PMC article.
References
- Tabaka M.; Kalwarczyk T.; Szymanski J.; Hou S.; Holyst R. The Effect of Macromolecular Crowding on Mobility of Biomolecules, Association Kinetics, and Gene Expression in Living Cells. Front. Phys. 2014, 2 (54), 1–14. 10.3389/fphy.2014.00054. - DOI
Publication types
MeSH terms
Substances
Related information
LinkOut - more resources
Full Text Sources