Efficient targeted integration directed by short homology in zebrafish and mammalian cells
- PMID:32412410
- PMCID: PMC7228771
- DOI: 10.7554/eLife.53968
Efficient targeted integration directed by short homology in zebrafish and mammalian cells
Abstract
Efficient precision genome engineering requires high frequency and specificity of integration at the genomic target site. Here, we describe a set of resources to streamline reporter gene knock-ins in zebrafish and demonstrate the broader utility of the method in mammalian cells. Our approach uses short homology of 24-48 bp to drive targeted integration of DNA reporter cassettes by homology-mediated end joining (HMEJ) at high frequency at a double strand break in the targeted gene. Our vector series, pGTag (plasmids for Gene Tagging), contains reporters flanked by a universal CRISPR sgRNA sequence which enables in vivo liberation of the homology arms. We observed high rates of germline transmission (22-100%) for targeted knock-ins at eight zebrafish loci and efficient integration at safe harbor loci in porcine and human cells. Our system provides a straightforward and cost-effective approach for high efficiency gene targeting applications in CRISPR and TALEN compatible systems.
Keywords: CRISPR/Cas9; developmental biology; end joining; genetics; genomics; human; knock-in; pig fibroblasts; targeted integration; zebrafish.
© 2020, Wierson et al.
Conflict of interest statement
WW Interests in Lifengine and Lifengine Animal Health, JW, MA, CM, MT, TW, SK, MV, ML, KM, JL, ZM, AW, CM, JH, KK, CC, DB, BW, BM, DD, MM No competing interests declared, DW, SS, DC Shares in Recombinetics, Inc, SE Shares in Lifengine, and Lifengine Animal Health, KC Shares in Recombinetics, Inc, Lifengine and Lifengine Animal Health, JE JJE has a financial conflict of interest with Recombinetics, Inc; Immusoft, Inc; LifEngine and LifEngine Animal Technologies;
Figures
















Similar articles
- GeneWeld: Efficient Targeted Integration Directed by Short Homology in Zebrafish.Welker JM, Wierson WA, Almeida MP, Mann CM, Torrie ME, Ming Z, Ekker SC, Clark KJ, Dobbs DL, Essner JJ, McGrail M.Welker JM, et al.Bio Protoc. 2021 Jul 20;11(14):e4100. doi: 10.21769/BioProtoc.4100. eCollection 2021 Jul 20.Bio Protoc. 2021.PMID:34395736Free PMC article.
- Highly efficient CRISPR/Cas9-mediated knock-in in zebrafish by homology-independent DNA repair.Auer TO, Duroure K, De Cian A, Concordet JP, Del Bene F.Auer TO, et al.Genome Res. 2014 Jan;24(1):142-53. doi: 10.1101/gr.161638.113. Epub 2013 Oct 31.Genome Res. 2014.PMID:24179142Free PMC article.
- Genome editing using CRISPR/Cas9-based knock-in approaches in zebrafish.Albadri S, Del Bene F, Revenu C.Albadri S, et al.Methods. 2017 May 15;121-122:77-85. doi: 10.1016/j.ymeth.2017.03.005. Epub 2017 Mar 12.Methods. 2017.PMID:28300641Review.
- Knock-in of large reporter genes in human cells via CRISPR/Cas9-induced homology-dependent and independent DNA repair.He X, Tan C, Wang F, Wang Y, Zhou R, Cui D, You W, Zhao H, Ren J, Feng B.He X, et al.Nucleic Acids Res. 2016 May 19;44(9):e85. doi: 10.1093/nar/gkw064. Epub 2016 Feb 4.Nucleic Acids Res. 2016.PMID:26850641Free PMC article.
- CRISPR-Cas systems: ushering in the new genome editing era.Perez Rojo F, Nyman RKM, Johnson AAT, Navarro MP, Ryan MH, Erskine W, Kaur P.Perez Rojo F, et al.Bioengineered. 2018;9(1):214-221. doi: 10.1080/21655979.2018.1470720.Bioengineered. 2018.PMID:29968520Free PMC article.Review.
Cited by
- p65 signaling dynamics drive the developmental progression of hematopoietic stem and progenitor cells through cell cycle regulation.Campbell CA, Calderon R, Pavani G, Cheng X, Barakat R, Snella E, Liu F, Peng X, Essner JJ, Dorman KS, McGrail M, Gadue P, French DL, Espin-Palazon R.Campbell CA, et al.Nat Commun. 2024 Sep 6;15(1):7787. doi: 10.1038/s41467-024-51922-5.Nat Commun. 2024.PMID:39242546Free PMC article.
- Genetically engineered zebrafish as models of skeletal development and regeneration.Henke K, Farmer DT, Niu X, Kraus JM, Galloway JL, Youngstrom DW.Henke K, et al.Bone. 2023 Feb;167:116611. doi: 10.1016/j.bone.2022.116611. Epub 2022 Nov 14.Bone. 2023.PMID:36395960Free PMC article.Review.
- Pythia: Non-random DNA repair allows predictable CRISPR/Cas9 integration and gene editing.Naert T, Yamamoto T, Han S, Horn M, Bethge P, Vladimirov N, Voigt FF, Figueiro-Silva J, Bachmann-Gagescu R, Helmchen F, Lienkamp SS.Naert T, et al.bioRxiv [Preprint]. 2024 Sep 23:2024.09.23.614424. doi: 10.1101/2024.09.23.614424.bioRxiv. 2024.PMID:39386429Free PMC article.Preprint.
- Expression and distribution of synaptotagmin family members in the zebrafish retina.Henry D, Joselevitch C, Matthews GG, Wollmuth LP.Henry D, et al.J Comp Neurol. 2022 Mar;530(4):705-728. doi: 10.1002/cne.25238. Epub 2021 Sep 24.J Comp Neurol. 2022.PMID:34468021Free PMC article.
- Precise base editing for thein vivo study of developmental signaling and human pathologies in zebrafish.Rosello M, Vougny J, Czarny F, Mione MC, Concordet JP, Albadri S, Del Bene F.Rosello M, et al.Elife. 2021 Feb 12;10:e65552. doi: 10.7554/eLife.65552.Elife. 2021.PMID:33576334Free PMC article.
References
- Bedell VM, Wang Y, Campbell JM, Poshusta TL, Starker CG, Krug RG, Tan W, Penheiter SG, Ma AC, Leung AY, Fahrenkrug SC, Carlson DF, Voytas DF, Clark KJ, Essner JJ, Ekker SC. In vivo genome editing using a high-efficiency TALEN system. Nature. 2012;491:114–118. doi: 10.1038/nature11537. - DOI - PMC - PubMed
Publication types
MeSH terms
Substances
Associated data
Related information
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases
Research Materials