Potential Role of Soluble Metal Impurities in the Acute Lung Inflammogenicity of Multi-Walled Carbon Nanotubes
- PMID:32098206
- PMCID: PMC7075329
- DOI: 10.3390/nano10020379
Potential Role of Soluble Metal Impurities in the Acute Lung Inflammogenicity of Multi-Walled Carbon Nanotubes
Abstract
Multi-walled carbon nanotubes (MWCNTs) have variable metal impurities, but little is known about the impact of soluble metal impurities on the toxicity of MWCNTs. Here, we evaluated the role of soluble metal impurities to the acute inflammogenic potential of MWCNTs, using five types of high purity MWCNTs (>95%). MWCNTs and their soluble fractions collected at 24 h after incubation in phosphate-buffered saline showed diverse metal impurities with variable concentrations. The fiber-free soluble fractions produced variable levels of reactive oxygen species (ROS), and the iron level was the key determinant for ROS production. The acute inflammation at 24 h after intratracheal instillation of MWCNTs to rats at 0.19, 0.63, and 1.91 mg MWCNT/kg body weight (bw) or fiber-free supernatants from MWCNT suspensions at 1.91 and 7.64 mg MWCNT/kg bw showed that the number of granulocytes, a marker for acute inflammation, was significantly increased with a good dose-dependency. The correlation study showed that neither the levels of iron nor the ROS generation potential of the soluble fractions showed any correlations with the inflammogenic potential. However, the total concentration of transition metals in the soluble fractions showed a good correlation with the acute lung inflammogenic potential. These results implied that metal impurities, especially transitional metals, can contribute to the acute inflammogenic potential of MWCNTs, although the major parameter for the toxicity of MWCNTs is size and shape.
Keywords: inflammation; lung; metal impurities; multi-walled carbon nanotubes; soluble fraction; transitional metals.
Conflict of interest statement
The authors declare no conflicts of interest.
Figures





Similar articles
- Pulmonary and pleural inflammation after intratracheal instillation of short single-walled and multi-walled carbon nanotubes.Fujita K, Fukuda M, Endoh S, Maru J, Kato H, Nakamura A, Shinohara N, Uchino K, Honda K.Fujita K, et al.Toxicol Lett. 2016 Aug 22;257:23-37. doi: 10.1016/j.toxlet.2016.05.025. Epub 2016 May 31.Toxicol Lett. 2016.PMID:27259835
- Wall Thickness of Industrial Multi-Walled Carbon Nanotubes Is Not a Crucial Factor for Their Degradation by Sodium Hypochlorite.Masyutin AG, Bagrov DV, Vlasova II, Nikishin II, Klinov DV, Sychevskaya KA, Onishchenko GE, Erokhina MV.Masyutin AG, et al.Nanomaterials (Basel). 2018 Sep 12;8(9):715. doi: 10.3390/nano8090715.Nanomaterials (Basel). 2018.PMID:30213043Free PMC article.
- Comparing in vitro cytotoxicity of graphite, short multi-walled carbon nanotubes, and long multi-walled carbon nanotubes.Rezazadeh Azari M, Mohammadian Y.Rezazadeh Azari M, et al.Environ Sci Pollut Res Int. 2020 May;27(13):15401-15406. doi: 10.1007/s11356-020-08036-4. Epub 2020 Feb 19.Environ Sci Pollut Res Int. 2020.PMID:32077025
- Inhalation toxicity assessment of carbon-based nanoparticles.Morimoto Y, Horie M, Kobayashi N, Shinohara N, Shimada M.Morimoto Y, et al.Acc Chem Res. 2013 Mar 19;46(3):770-81. doi: 10.1021/ar200311b. Epub 2012 May 11.Acc Chem Res. 2013.PMID:22574947Review.
- The impact of multi-walled carbon nanotubes (MWCNTs) on macrophages: contribution of MWCNT characteristics.Li Y, Cao J.Li Y, et al.Sci China Life Sci. 2018 Nov;61(11):1333-1351. doi: 10.1007/s11427-017-9242-3. Epub 2018 May 22.Sci China Life Sci. 2018.PMID:29797182Review.
Cited by
- Innate but Not Adaptive Immunity Regulates Lung Recovery from Chronic Exposure to Graphene Oxide Nanosheets.Loret T, de Luna LAV, Fordham A, Arshad A, Barr K, Lozano N, Kostarelos K, Bussy C.Loret T, et al.Adv Sci (Weinh). 2022 Apr;9(11):e2104559. doi: 10.1002/advs.202104559. Epub 2022 Feb 15.Adv Sci (Weinh). 2022.PMID:35166457Free PMC article.
- Evaluation of neurotoxicity and the role of oxidative stress of cobalt nanoparticles, titanium dioxide nanoparticles, and multiwall carbon nanotubes in Caenorhabditis elegans.Chen C, Chen J, Lin X, Yang J, Qu H, Li L, Zhang D, Wang W, Chang X, Guo Z, Cai P, Yu G, Shao W, Hu H, Wu S, Li H, Bornhorst J, Aschner M, Zheng F.Chen C, et al.Toxicol Sci. 2023 Oct 30;196(1):85-98. doi: 10.1093/toxsci/kfad084.Toxicol Sci. 2023.PMID:37584706Free PMC article.
- Low Toxicological Impact of Commercial Pristine Multi-Walled Carbon Nanotubes on the YeastSaccharomyces cerevisiae.Martel Martín S, Barros R, Domi B, Rumbo C, Poddighe M, Aparicio S, Suarez-Diez M, Tamayo-Ramos JA.Martel Martín S, et al.Nanomaterials (Basel). 2021 Sep 1;11(9):2272. doi: 10.3390/nano11092272.Nanomaterials (Basel). 2021.PMID:34578588Free PMC article.
- Profiling of Sub-Lethal in Vitro Effects of Multi-Walled Carbon Nanotubes Reveals Changes in Chemokines and Chemokine Receptors.Keshavan S, Andón FT, Gallud A, Chen W, Reinert K, Tran L, Fadeel B.Keshavan S, et al.Nanomaterials (Basel). 2021 Mar 30;11(4):883. doi: 10.3390/nano11040883.Nanomaterials (Basel). 2021.PMID:33808372Free PMC article.
- Multi-walled carbon nanotubes elicit concordant changes in DNA methylation and gene expression following long-term pulmonary exposure in mice.Scala G, Delaval MN, Mukherjee SP, Federico A, Khaliullin TO, Yanamala N, Fatkhutdinova LM, Kisin ER, Greco D, Fadeel B, Shvedova AA.Scala G, et al.Carbon N Y. 2021 Jun;178:563-572. doi: 10.1016/j.carbon.2021.03.045.Carbon N Y. 2021.PMID:37206955Free PMC article.
References
- Nagai H., Okazaki Y., Chew S.H., Misawa N., Yamashita Y., Akatsuka S., Ishihara T., Yamashita K., Yoshikawa Y., Yasui H., et al. Diameter and rigidity of multiwalled carbon nanotubes are critical factors in mesothelial injury and carcinogenesis. Proc. Natl. Acad. Sci. USA. 2011;108:E1330–E1338. doi: 10.1073/pnas.1110013108. - DOI - PMC - PubMed
- Lamon L., Asturiol D., Richarz A., Joossens E., Graepel R., Aschberger K., Worth A. Grouping of nanomaterials to read-across hazard endpoints: from data collection to assessment of the grouping hypothesis by application of chemoinformatic techniques. Part. Fibre Toxicol. 2018;15:37. doi: 10.1186/s12989-018-0273-1. - DOI - PMC - PubMed
- Mech A., Rasmussen K., Jantunen P., Aicher L., Alessandrelli M., Bernauer U., Bleeker E.A.J., Bouillard J., Di Prospero Fanghella P., Draisci R., et al. Insights into possibilities for grouping and read-across for nanomaterials in EU chemicals legislation. Nanotoxicology. 2019;13:119–141. doi: 10.1080/17435390.2018.1513092. - DOI - PubMed
Grants and funding
LinkOut - more resources
Full Text Sources