Dinoflagellates with relic endosymbiont nuclei as models for elucidating organellogenesis
- PMID:32094181
- PMCID: PMC7071878
- DOI: 10.1073/pnas.1911884117
Dinoflagellates with relic endosymbiont nuclei as models for elucidating organellogenesis
Abstract
Nucleomorphs are relic endosymbiont nuclei so far found only in two algal groups, cryptophytes and chlorarachniophytes, which have been studied to model the evolutionary process of integrating an endosymbiont alga into a host-governed plastid (organellogenesis). However, past studies suggest that DNA transfer from the endosymbiont to host nuclei had already ceased in both cryptophytes and chlorarachniophytes, implying that the organellogenesis at the genetic level has been completed in the two systems. Moreover, we have yet to pinpoint the closest free-living relative of the endosymbiotic alga engulfed by the ancestral chlorarachniophyte or cryptophyte, making it difficult to infer how organellogenesis altered the endosymbiont genome. To counter the above issues, we need novel nucleomorph-bearing algae, in which endosymbiont-to-host DNA transfer is on-going and for which endosymbiont/plastid origins can be inferred at a fine taxonomic scale. Here, we report two previously undescribed dinoflagellates, strains MGD and TGD, with green algal endosymbionts enclosing plastids as well as relic nuclei (nucleomorphs). We provide evidence for the presence of DNA in the two nucleomorphs and the transfer of endosymbiont genes to the host (dinoflagellate) genomes. Furthermore, DNA transfer between the host and endosymbiont nuclei was found to be in progress in both the MGD and TGD systems. Phylogenetic analyses successfully resolved the origins of the endosymbionts at the genus level. With the combined evidence, we conclude that the host-endosymbiont integration in MGD/TGD is less advanced than that in cryptophytes/chrorarachniophytes, and propose the two dinoflagellates as models for elucidating organellogenesis.
Keywords: Pedinophyceae; endosymbiotic gene transfer; nucleomorph; plastid; secondary endosymbiosis.
Conflict of interest statement
The authors declare no competing interest.
Figures





Similar articles
- Nucleomorph and plastid genome sequences of the chlorarachniophyte Lotharella oceanica: convergent reductive evolution and frequent recombination in nucleomorph-bearing algae.Tanifuji G, Onodera NT, Brown MW, Curtis BA, Roger AJ, Ka-Shu Wong G, Melkonian M, Archibald JM.Tanifuji G, et al.BMC Genomics. 2014 May 15;15(1):374. doi: 10.1186/1471-2164-15-374.BMC Genomics. 2014.PMID:24885563Free PMC article.
- Algal genomes reveal evolutionary mosaicism and the fate of nucleomorphs.Curtis BA, Tanifuji G, Burki F, Gruber A, Irimia M, Maruyama S, Arias MC, Ball SG, Gile GH, Hirakawa Y, Hopkins JF, Kuo A, Rensing SA, Schmutz J, Symeonidi A, Elias M, Eveleigh RJ, Herman EK, Klute MJ, Nakayama T, Oborník M, Reyes-Prieto A, Armbrust EV, Aves SJ, Beiko RG, Coutinho P, Dacks JB, Durnford DG, Fast NM, Green BR, Grisdale CJ, Hempel F, Henrissat B, Höppner MP, Ishida K, Kim E, Kořený L, Kroth PG, Liu Y, Malik SB, Maier UG, McRose D, Mock T, Neilson JA, Onodera NT, Poole AM, Pritham EJ, Richards TA, Rocap G, Roy SW, Sarai C, Schaack S, Shirato S, Slamovits CH, Spencer DF, Suzuki S, Worden AZ, Zauner S, Barry K, Bell C, Bharti AK, Crow JA, Grimwood J, Kramer R, Lindquist E, Lucas S, Salamov A, McFadden GI, Lane CE, Keeling PJ, Gray MW, Grigoriev IV, Archibald JM.Curtis BA, et al.Nature. 2012 Dec 6;492(7427):59-65. doi: 10.1038/nature11681. Epub 2012 Nov 28.Nature. 2012.PMID:23201678
- Overexpression of molecular chaperone genes in nucleomorph genomes.Hirakawa Y, Suzuki S, Archibald JM, Keeling PJ, Ishida K.Hirakawa Y, et al.Mol Biol Evol. 2014 Jun;31(6):1437-43. doi: 10.1093/molbev/msu092. Epub 2014 Mar 6.Mol Biol Evol. 2014.PMID:24603278
- Going, going, not quite gone: nucleomorphs as a case study in nuclear genome reduction.Archibald JM, Lane CE.Archibald JM, et al.J Hered. 2009 Sep-Oct;100(5):582-90. doi: 10.1093/jhered/esp055. Epub 2009 Jul 17.J Hered. 2009.PMID:19617523Review.
- The endosymbiotic origin, diversification and fate of plastids.Keeling PJ.Keeling PJ.Philos Trans R Soc Lond B Biol Sci. 2010 Mar 12;365(1541):729-48. doi: 10.1098/rstb.2009.0103.Philos Trans R Soc Lond B Biol Sci. 2010.PMID:20124341Free PMC article.Review.
Cited by
- Gene loss, pseudogenization, and independent genome reduction in non-photosynthetic species of Cryptomonas (Cryptophyceae) revealed by comparative nucleomorph genomics.Kim JI, Tanifuji G, Jeong M, Shin W, Archibald JM.Kim JI, et al.BMC Biol. 2022 Oct 8;20(1):227. doi: 10.1186/s12915-022-01429-6.BMC Biol. 2022.PMID:36209116Free PMC article.
- ImprovedCladocopium goreaui Genome Assembly Reveals Features of a Facultative Coral Symbiont and the Complex Evolutionary History of Dinoflagellate Genes.Chen Y, Shah S, Dougan KE, van Oppen MJH, Bhattacharya D, Chan CX.Chen Y, et al.Microorganisms. 2022 Aug 17;10(8):1662. doi: 10.3390/microorganisms10081662.Microorganisms. 2022.PMID:36014080Free PMC article.
- Tightly Constrained Genome Reduction and Relaxation of Purifying Selection during Secondary Plastid Endosymbiosis.Uthanumallian K, Iha C, Repetti SI, Chan CX, Bhattacharya D, Duchene S, Verbruggen H.Uthanumallian K, et al.Mol Biol Evol. 2022 Jan 7;39(1):msab295. doi: 10.1093/molbev/msab295.Mol Biol Evol. 2022.PMID:34613411Free PMC article.
- Interpreting the complexities of the plastid genome in dinoflagellates: a mini-review of recent advances.Tang L, Tam NF, Lam W, Lee TC, Xu SJ, Lee CL, Lee FW.Tang L, et al.Plant Mol Biol. 2024 Oct 21;114(6):114. doi: 10.1007/s11103-024-01511-3.Plant Mol Biol. 2024.PMID:39432142Review.
- Genomic Insights into Plastid Evolution.Sibbald SJ, Archibald JM.Sibbald SJ, et al.Genome Biol Evol. 2020 Jul 1;12(7):978-990. doi: 10.1093/gbe/evaa096.Genome Biol Evol. 2020.PMID:32402068Free PMC article.Review.
References
- Archibald J. M., The puzzle of plastid evolution. Curr. Biol. 19, R81–R88 (2009). - PubMed
- Zimorski V., Ku C., Martin W. F., Gould S. B., Endosymbiotic theory for organelle origins. Curr. Opin. Microbiol. 22, 38–48 (2014). - PubMed
- Archibald J. M., Endosymbiosis and eukaryotic cell evolution. Curr. Biol. 25, R911–R921 (2015). - PubMed
- Nowack E. C. M., Weber A. P. M., Genomics-informed insights into endosymbiotic organelle evolution in photosynthetic eukaryotes. Annu. Rev. Plant Biol. 69, 51–84 (2018). - PubMed
Publication types
MeSH terms
Related information
LinkOut - more resources
Full Text Sources
Other Literature Sources
Research Materials
Miscellaneous