A case for a negative-strand coding sequence in a group of positive-sense RNA viruses
- PMID:32064120
- PMCID: PMC7010960
- DOI: 10.1093/ve/veaa007
A case for a negative-strand coding sequence in a group of positive-sense RNA viruses
Abstract
Positive-sense single-stranded RNA viruses form the largest and most diverse group of eukaryote-infecting viruses. Their genomes comprise one or more segments of coding-sense RNA that function directly as messenger RNAs upon release into the cytoplasm of infected cells. Positive-sense RNA viruses are generally accepted to encode proteins solely on the positive strand. However, we previously identified a surprisingly long (∼1,000-codon) open reading frame (ORF) on the negative strand of some members of the familyNarnaviridae which, together with RNA bacteriophages of the familyLeviviridae, form a sister group to all other positive-sense RNA viruses. Here, we completed the genomes of three mosquito-associated narnaviruses, all of which have the long reverse-frame ORF. We systematically identified narnaviral sequences in public data sets from a wide range of sources, including arthropod, fungal, and plant transcriptomic data sets. Long reverse-frame ORFs are widespread in one clade of narnaviruses, where they frequently occupy >95 per cent of the genome. The reverse-frame ORFs correspond to a specific avoidance of CUA, UUA, and UCA codons (i.e. stop codon reverse complements) in the forward-frame RNA-dependent RNA polymerase ORF. However, absence of these codons cannot be explained by other factors such as inability to decode these codons or GC3 bias. Together with other analyses, we provide the strongest evidence yet of coding capacity on the negative strand of a positive-sense RNA virus. As these ORFs comprise some of the longest known overlapping genes, their study may be of broad relevance to understanding overlapping gene evolution andde novo origin of genes.
Keywords: RNA virus; overlapping genes.
© The Author(s) 2020. Published by Oxford University Press.
Figures







Similar articles
- Persistence of Ambigrammatic Narnaviruses Requires Translation of the Reverse Open Reading Frame.Retallack H, Popova KD, Laurie MT, Sunshine S, DeRisi JL.Retallack H, et al.J Virol. 2021 Jun 10;95(13):e0010921. doi: 10.1128/JVI.00109-21. Epub 2021 Jun 10.J Virol. 2021.PMID:33762418Free PMC article.
- An exploration of ambigrammatic sequences in narnaviruses.DeRisi JL, Huber G, Kistler A, Retallack H, Wilkinson M, Yllanes D.DeRisi JL, et al.Sci Rep. 2019 Nov 29;9(1):17982. doi: 10.1038/s41598-019-54181-3.Sci Rep. 2019.PMID:31784609Free PMC article.
- Evolutionary relationships among putative RNA-dependent RNA polymerases encoded by a mitochondrial virus-like RNA in the Dutch elm disease fungus, Ophiostoma novo-ulmi, by other viruses and virus-like RNAs and by the Arabidopsis mitochondrial genome.Hong Y, Cole TE, Brasier CM, Buck KW.Hong Y, et al.Virology. 1998 Jun 20;246(1):158-69. doi: 10.1006/viro.1998.9178.Virology. 1998.PMID:9657003
- Extending the Coding Potential of Viral Genomes with Overlapping Antisense ORFs: A Case for the De Novo Creation of the Gene Encoding the Antisense Protein ASP of HIV-1.Pavesi A, Romerio F.Pavesi A, et al.Viruses. 2022 Jan 14;14(1):146. doi: 10.3390/v14010146.Viruses. 2022.PMID:35062351Free PMC article.
- Evolution and taxonomy of positive-strand RNA viruses: implications of comparative analysis of amino acid sequences.Koonin EV, Dolja VV.Koonin EV, et al.Crit Rev Biochem Mol Biol. 1993;28(5):375-430. doi: 10.3109/10409239309078440.Crit Rev Biochem Mol Biol. 1993.PMID:8269709Review.
Cited by
- Analysis of the virome associated to grapevine downy mildew lesions reveals new mycovirus lineages.Chiapello M, Rodríguez-Romero J, Ayllón MA, Turina M.Chiapello M, et al.Virus Evol. 2020 Nov 30;6(2):veaa058. doi: 10.1093/ve/veaa058. eCollection 2020 Jul.Virus Evol. 2020.PMID:33324489Free PMC article.
- Polymorphism of genetic ambigrams.Dudas G, Huber G, Wilkinson M, Yllanes D.Dudas G, et al.Virus Evol. 2021 Apr 19;7(1):veab038. doi: 10.1093/ve/veab038. eCollection 2021 Jan.Virus Evol. 2021.PMID:34055388Free PMC article.
- Hidden viral proteins: How powerful are they?Li F, Jia M, Wang A.Li F, et al.PLoS Pathog. 2024 Jan 18;20(1):e1011905. doi: 10.1371/journal.ppat.1011905. eCollection 2024 Jan.PLoS Pathog. 2024.PMID:38236814Free PMC article.No abstract available.
- Genomic Analysis of Non-B Nucleic Acids Structures in SARS-CoV-2: Potential Key Roles for These Structures in Mutability, Translation, and Replication?Bidula S, Brázda V.Bidula S, et al.Genes (Basel). 2023 Jan 6;14(1):157. doi: 10.3390/genes14010157.Genes (Basel). 2023.PMID:36672896Free PMC article.
- Pervasive RNA folding is crucial for narnavirus genome maintenance.Fukuda M, Cai J, Bader JS, Boeke JD.Fukuda M, et al.Proc Natl Acad Sci U S A. 2023 Jun 27;120(26):e2304082120. doi: 10.1073/pnas.2304082120. Epub 2023 Jun 20.Proc Natl Acad Sci U S A. 2023.PMID:37339222Free PMC article.
References
Related information
Grants and funding
LinkOut - more resources
Full Text Sources
Research Materials