NOS1 inhibits the interferon response of cancer cells by S-nitrosylation of HDAC2
- PMID:31805977
- PMCID: PMC6896289
- DOI: 10.1186/s13046-019-1448-9
NOS1 inhibits the interferon response of cancer cells by S-nitrosylation of HDAC2
Abstract
Background: The dysfunction of type I interferon (IFN) signaling is an important mechanism of immune escape and metastasis in tumors. Increased NOS1 expression has been detected in melanoma, which correlated with dysfunctional IFN signaling and poor response to immunotherapy, but the specific mechanism has not been determined. In this study, we investigated the regulation of NOS1 on the interferon response and clarified the relevant molecular mechanisms.
Methods: After stable transfection of A375 cells with NOS1 expression plasmids, the transcription and expression of IFNα-stimulated genes (ISGs) were assessed using pISRE luciferase reporter gene analysis, RT-PCR, and western blotting, respectively. The effect of NOS1 on lung metastasis was assessed in melanoma mouse models. A biotin-switch assay was performed to detect the S-nitrosylation of HDAC2 by NOS1. ChIP-qPCR was conducted to measure the binding of HDAC2, H4K16ac, H4K5ac, H3ac, and RNA polymerase II in the promoters of ISGs after IFNα stimulation. This effect was further evaluated by altering the expression level of HDAC2 or by transfecting the HDAC2-C262A/C274A site mutant plasmids into cells. The coimmunoprecipitation assay was performed to detect the interaction of HDAC2 with STAT1 and STAT2. Loss-of-function and gain-of-function approaches were used to examine the effect of HDAC2-C262A/C274A on lung metastasis. Tumor infiltrating lymphocytes were analyzed by flow cytometry.
Results: HDAC2 is recruited to the promoter of ISGs and deacetylates H4K16 for the optimal expression of ISGs in response to IFNα treatment. Overexpression of NOS1 in melanoma cells decreases IFNα-responsiveness and induces the S-nitrosylation of HDAC2-C262/C274. This modification decreases the binding of HDAC2 with STAT1, thereby reducing the recruitment of HDAC2 to the ISG promoter and the deacetylation of H4K16. Moreover, expression of a mutant form of HDAC2, which cannot be nitrosylated, reverses the inhibition of ISG expression by NOS1 in vitro and decreases NOS1-induced lung metastasis and inhibition of tumor infiltrating lymphocytes in a melanoma mouse model.
Conclusions: This study provides evidence that NOS1 induces dysfunctional IFN signaling to promote lung metastasis in melanoma, highlighting NOS1-induced S-nitrosylation of HDAC2 in the regulation of IFN signaling via histone modification.
Keywords: H4K16ac; HDAC2; IFNα; Melanoma; Metastasis; NOS1; S-nitrosylation.
Conflict of interest statement
The authors declare that they have no competing interests.
Figures






Similar articles
- S-Nitrosylation of Histone Deacetylase 2 by Neuronal Nitric Oxide Synthase as a Mechanism of Diastolic Dysfunction.Yoon S, Kim M, Lee H, Kang G, Bedi K, Margulies KB, Jain R, Nam KI, Kook H, Eom GH.Yoon S, et al.Circulation. 2021 May 11;143(19):1912-1925. doi: 10.1161/CIRCULATIONAHA.119.043578. Epub 2021 Mar 10.Circulation. 2021.PMID:33715387
- Inhibition of NOS1 promotes the interferon response of melanoma cells.Chen X, Zou Z, Wang Q, Gao W, Zeng S, Ye S, Xu P, Huang M, Li K, Chen J, Zhong Z, Zhang Q, Hao B, Liu Q.Chen X, et al.J Transl Med. 2022 May 10;20(1):205. doi: 10.1186/s12967-022-03403-w.J Transl Med. 2022.PMID:35538490Free PMC article.
- Histone deacetylase 2 knockout suppresses immune escape of triple-negative breast cancer cells via downregulating PD-L1 expression.Xu P, Xiong W, Lin Y, Fan L, Pan H, Li Y.Xu P, et al.Cell Death Dis. 2021 Aug 7;12(8):779. doi: 10.1038/s41419-021-04047-2.Cell Death Dis. 2021.PMID:34365463Free PMC article.
- Tricho-rhino-phalangeal syndrome 1 protein functions as a scaffold required for ubiquitin-specific protease 4-directed histone deacetylase 2 de-ubiquitination and tumor growth.Wang Y, Zhang J, Wu L, Liu W, Wei G, Gong X, Liu Y, Ma Z, Ma F, Thiery JP, Chen L.Wang Y, et al.Breast Cancer Res. 2018 Aug 2;20(1):83. doi: 10.1186/s13058-018-1018-7.Breast Cancer Res. 2018.PMID:30071870Free PMC article.
- A Positive Feedback Amplifier Circuit That Regulates Interferon (IFN)-Stimulated Gene Expression and Controls Type I and Type II IFN Responses.Michalska A, Blaszczyk K, Wesoly J, Bluyssen HAR.Michalska A, et al.Front Immunol. 2018 May 28;9:1135. doi: 10.3389/fimmu.2018.01135. eCollection 2018.Front Immunol. 2018.PMID:29892288Free PMC article.Review.
Cited by
- Epigenetic perspectives associated with COVID-19 infection and related cytokine storm: an updated review.Dey A, Vaishak K, Deka D, Radhakrishnan AK, Paul S, Shanmugam P, Daniel AP, Pathak S, Duttaroy AK, Banerjee A.Dey A, et al.Infection. 2023 Dec;51(6):1603-1618. doi: 10.1007/s15010-023-02017-8. Epub 2023 Mar 12.Infection. 2023.PMID:36906872Free PMC article.Review.
- The Breast Cancer Protooncogenes HER2, BRCA1 and BRCA2 and Their Regulation by the iNOS/NOS2 Axis.Lin K, Baritaki S, Vivarelli S, Falzone L, Scalisi A, Libra M, Bonavida B.Lin K, et al.Antioxidants (Basel). 2022 Jun 17;11(6):1195. doi: 10.3390/antiox11061195.Antioxidants (Basel). 2022.PMID:35740092Free PMC article.Review.
- The expanding roles of neuronal nitric oxide synthase (NOS1).Solanki K, Rajpoot S, Bezsonov EE, Orekhov AN, Saluja R, Wary A, Axen C, Wary K, Baig MS.Solanki K, et al.PeerJ. 2022 Jul 7;10:e13651. doi: 10.7717/peerj.13651. eCollection 2022.PeerJ. 2022.PMID:35821897Free PMC article.Review.
- The role of S-nitrosylation of PFKM in regulation of glycolysis in ovarian cancer cells.Gao W, Huang M, Chen X, Chen J, Zou Z, Li L, Ji K, Nie Z, Yang B, Wei Z, Xu P, Jia J, Zhang Q, Shen H, Wang Q, Li K, Zhu L, Wang M, Ye S, Zeng S, Lin Y, Rong Z, Xu Y, Zhu P, Zhang H, Hao B, Liu Q.Gao W, et al.Cell Death Dis. 2021 Apr 15;12(4):408. doi: 10.1038/s41419-021-03681-0.Cell Death Dis. 2021.PMID:33859186Free PMC article.
- A SARS-CoV-2 protein interaction map reveals targets for drug repurposing.Gordon DE, Jang GM, Bouhaddou M, Xu J, Obernier K, White KM, O'Meara MJ, Rezelj VV, Guo JZ, Swaney DL, Tummino TA, Hüttenhain R, Kaake RM, Richards AL, Tutuncuoglu B, Foussard H, Batra J, Haas K, Modak M, Kim M, Haas P, Polacco BJ, Braberg H, Fabius JM, Eckhardt M, Soucheray M, Bennett MJ, Cakir M, McGregor MJ, Li Q, Meyer B, Roesch F, Vallet T, Mac Kain A, Miorin L, Moreno E, Naing ZZC, Zhou Y, Peng S, Shi Y, Zhang Z, Shen W, Kirby IT, Melnyk JE, Chorba JS, Lou K, Dai SA, Barrio-Hernandez I, Memon D, Hernandez-Armenta C, Lyu J, Mathy CJP, Perica T, Pilla KB, Ganesan SJ, Saltzberg DJ, Rakesh R, Liu X, Rosenthal SB, Calviello L, Venkataramanan S, Liboy-Lugo J, Lin Y, Huang XP, Liu Y, Wankowicz SA, Bohn M, Safari M, Ugur FS, Koh C, Savar NS, Tran QD, Shengjuler D, Fletcher SJ, O'Neal MC, Cai Y, Chang JCJ, Broadhurst DJ, Klippsten S, Sharp PP, Wenzell NA, Kuzuoglu-Ozturk D, Wang HY, Trenker R, Young JM, Cavero DA, Hiatt J, Roth TL, Rathore U, Subramanian A, Noack J, Hubert M, Stroud RM, Frankel AD, Rosenberg OS, Verba KA, Agard DA, Ott M, Emerman M, Jura N, von Zastrow M, Verdin E, Ashworth A, Schwartz O, d'Enfert C, Mukherjee S, Jacobson M, Malik HS, Fujimori DG, Ideker T, Craik CS,…See abstract for full author list ➔Gordon DE, et al.Nature. 2020 Jul;583(7816):459-468. doi: 10.1038/s41586-020-2286-9. Epub 2020 Apr 30.Nature. 2020.PMID:32353859Free PMC article.
References
MeSH terms
Substances
Related information
Grants and funding
LinkOut - more resources
Full Text Sources
Research Materials
Miscellaneous