Movatterモバイル変換


[0]ホーム

URL:


Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
Thehttps:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

NIH NLM Logo
Log inShow account info
Access keysNCBI HomepageMyNCBI HomepageMain ContentMain Navigation
pubmed logo
Advanced Clipboard
User Guide

Full text links

Frontiers Media SA full text link Frontiers Media SA Free PMC article
Full text links

Actions

Review
.2019 Nov 5:10:2569.
doi: 10.3389/fimmu.2019.02569. eCollection 2019.

Understanding Infection-Induced Thrombosis: Lessons Learned From Animal Models

Affiliations
Review

Understanding Infection-Induced Thrombosis: Lessons Learned From Animal Models

Nonantzin Beristain-Covarrubias et al. Front Immunol..

Abstract

Thrombosis is a common consequence of infection that is associated with poor patient outcome. Nevertheless, the mechanisms by which infection-associated thrombosis is induced, maintained and resolved are poorly understood, as is the contribution thrombosis makes to host control of infection and pathogen spread. The key difference between infection-associated thrombosis and thrombosis in other circumstances is a stronger inflammation-mediated component caused by the presence of the pathogen and its products. This inflammation triggers the activation of platelets, which may accompany damage to the endothelium, resulting in fibrin deposition and thrombus formation. This process is often referred to as thrombo-inflammation. Strikingly, despite its clinical importance and despite thrombi being induced to many different pathogens, it is still unclear whether the mechanisms underlying this process are conserved and how we can best understand this process. This review summarizes thrombosis in a variety of models, including single antigen models such as LPS, and infection models using viruses and bacteria. We provide a specific focus onSalmonella Typhimurium infection as a useful model to address all stages of thrombosis during infection. We highlight how this model has helped us identify how thrombosis can appear in different organs at different times and thrombi be detected for weeks after infection in one site, yet largely be resolved within 24 h in another. Furthermore, we discuss the observation that thrombi induced toSalmonella Typhimurium are largely devoid of bacteria. Finally, we discuss the value of different therapeutic approaches to target thrombosis, the potential importance of timing in their administration and the necessity to maintain normal hemostasis after treatment. Improvements in our understanding of these processes can be used to better target infection-mediated mechanisms of thrombosis.

Keywords: Salmonella; bacteria; pathogens; platelets; thrombo-inflammation; thrombosis; virus.

Copyright © 2019 Beristain-Covarrubias, Perez-Toledo, Thomas, Henderson, Watson and Cunningham.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Examples of animal models available to study thrombosis during infection. A range of approaches has been employed to evaluate infection-induced thrombosis. Single microbial component-induced sepsis, or CLP models, mimic severe sepsis in humans, but most are usually only useable for a few days either because the infection is cleared or it is lethal. Some viral and bacterial infection models can induce longer-lasting infections and thrombotic complications may also be useful to study the resolution of thrombosis.
Figure 2
Figure 2
Thrombosis develops asynchronously in the spleen and liver after STm infection. Resident immune cells (monocytes/macrophages/neutrophils) are more abundant in the spleen compared to the liver. Although the mechanism is still under study, splenic phagocytic cells and neutrophils participate in the induction of white, platelet-rich, thrombi in the spleen 24 h after infection. Thrombi in the spleen resolve rapidly thereafter so that from day 7 onwards post-infection only “ghosts” of fibrin are observed. In the liver, thrombi are not detected until 7 days after infection, despite the liver and spleen having similarly high bacteria burdens in the first week post-infection. Thrombosis in the liver requires inflammatory cell recruitment and activation through TLR4, which promotes IFNγ production, the accumulation of monocytic cells and their upregulation of podoplanin. Inflammation is associated with perturbed endothelial integrity/endothelial damage making it possible for the interaction of podoplanin expressed on monocytic cells and CLEC-2 on platelets. Thrombosis in the liver persists for weeks and the resolution of thrombosis is observed from day 21 after infection. The mechanism(s) that underlie the resolution of thrombosis in these two different organs is still unknown. A strength of the STm infection model is that it offers an alternative tool to understand this process.
Figure 3
Figure 3
Current and potential molecules or pathways to target infection-associated thrombosis. Anticoagulants interfere with the activity of different clotting factors in the coagulation cascade that aims to rebalance hemostasis. Platelet GPVI and CLEC-2 are activated via SFK kinases and play a role in infection-mediated platelet activation. Neutrophil activation and the release of NETs together with associated factors (DNA/Histones) are also under study for developing strategies to limit their pro-thrombotic effects.
See this image and copyright information in PMC

References

    1. Smeeth L, Cook C, Thomas S, Hall AJ, Hubbard R, Vallance P. Risk of deep vein thrombosis and pulmonary embolism after acute infection in a community setting. Lancet. (2006) 367:1075–9. 10.1016/S0140-6736(06)68474-2 - DOI - PubMed
    1. Dalager-Pedersen M, Sogaard M, Schonheyder HC, Nielsen H, Thomsen RW. Risk for myocardial infarction and stroke after community-acquired bacteremia: a 20-year population-based cohort study. Circulation. (2014) 129:1387–96. 10.1161/CIRCULATIONAHA.113.006699 - DOI - PubMed
    1. Cohoon KP, Ashrani AA, Crusan DJ, Petterson TM, Bailey KR, Heit JA. Is infection an independent risk factor for venous thromboembolism? A population-based, case-control study. Am J Med. (2018) 131:307–16.e2. 10.1016/j.amjmed.2017.09.015 - DOI - PMC - PubMed
    1. Liu X, Wang L, Wang S, Zhang W, Yu Y, Chen S, Ao H. Association between infection and thrombosis after coronary artery bypass grafting: a cohort study. J Cardiothorac Vasc Anesth. (2019) 33:1610–6. 10.1053/j.jvca.2018.09.008 - DOI - PubMed
    1. Fugate JE, Lyons JL, Thakur KT, Smith BR, Hedley-Whyte ET, Mateen FJ. Infectious causes of stroke. Lancet Infect Dis. (2014) 14:869–80. 10.1016/S1473-3099(14)70755-8 - DOI - PubMed

Publication types

MeSH terms

Grants and funding

LinkOut - more resources

Full text links
Frontiers Media SA full text link Frontiers Media SA Free PMC article
Cite
Send To

NCBI Literature Resources

MeSHPMCBookshelfDisclaimer

The PubMed wordmark and PubMed logo are registered trademarks of the U.S. Department of Health and Human Services (HHS). Unauthorized use of these marks is strictly prohibited.


[8]ページ先頭

©2009-2025 Movatter.jp