Rapid ocean acidification and protracted Earth system recovery followed the end-Cretaceous Chicxulub impact
- PMID:31636204
- PMCID: PMC6842625
- DOI: 10.1073/pnas.1905989116
Rapid ocean acidification and protracted Earth system recovery followed the end-Cretaceous Chicxulub impact
Abstract
Mass extinction at the Cretaceous-Paleogene (K-Pg) boundary coincides with the Chicxulub bolide impact and also falls within the broader time frame of Deccan trap emplacement. Critically, though, empirical evidence as to how either of these factors could have driven observed extinction patterns and carbon cycle perturbations is still lacking. Here, using boron isotopes in foraminifera, we document a geologically rapid surface-ocean pH drop following the Chicxulub impact, supporting impact-induced ocean acidification as a mechanism for ecological collapse in the marine realm. Subsequently, surface water pH rebounded sharply with the extinction of marine calcifiers and the associated imbalance in the global carbon cycle. Our reconstructed water-column pH gradients, combined with Earth system modeling, indicate that a partial ∼50% reduction in global marine primary productivity is sufficient to explain observed marine carbon isotope patterns at the K-Pg, due to the underlying action of the solubility pump. While primary productivity recovered within a few tens of thousands of years, inefficiency in carbon export to the deep sea lasted much longer. This phased recovery scenario reconciles competing hypotheses previously put forward to explain the K-Pg carbon isotope records, and explains both spatially variable patterns of change in marine productivity across the event and a lack of extinction at the deep sea floor. In sum, we provide insights into the drivers of the last mass extinction, the recovery of marine carbon cycling in a postextinction world, and the way in which marine life imprints its isotopic signal onto the geological record.
Keywords: Cretaceous/Paleogene boundary; GENIE model; boron isotopes; mass extinction; ocean acidification.
Copyright © 2019 the Author(s). Published by PNAS.
Conflict of interest statement
The authors declare no competing interest.
Figures



Similar articles
- Ocean acidification and the Permo-Triassic mass extinction.Clarkson MO, Kasemann SA, Wood RA, Lenton TM, Daines SJ, Richoz S, Ohnemueller F, Meixner A, Poulton SW, Tipper ET.Clarkson MO, et al.Science. 2015 Apr 10;348(6231):229-32. doi: 10.1126/science.aaa0193.Science. 2015.PMID:25859043
- End-Cretaceous marine mass extinction not caused by productivity collapse.Alegret L, Thomas E, Lohmann KC.Alegret L, et al.Proc Natl Acad Sci U S A. 2012 Jan 17;109(3):728-32. doi: 10.1073/pnas.1110601109. Epub 2011 Dec 29.Proc Natl Acad Sci U S A. 2012.PMID:22207626Free PMC article.
- Severity of ocean acidification following the end-Cretaceous asteroid impact.Tyrrell T, Merico A, Armstrong McKay DI.Tyrrell T, et al.Proc Natl Acad Sci U S A. 2015 May 26;112(21):6556-61. doi: 10.1073/pnas.1418604112. Epub 2015 May 11.Proc Natl Acad Sci U S A. 2015.PMID:25964350Free PMC article.
- Multiple factors in the origin of the Cretaceous/Tertiary boundary: the role of environmental stress and Deccan Trap volcanism.Glasby GP, Kunzendorf H.Glasby GP, et al.Geol Rundsch. 1996 Jun;85(2):191-210. doi: 10.1007/BF02422228.Geol Rundsch. 1996.PMID:11543126Review.
- The Chicxulub asteroid impact and mass extinction at the Cretaceous-Paleogene boundary.Schulte P, Alegret L, Arenillas I, Arz JA, Barton PJ, Bown PR, Bralower TJ, Christeson GL, Claeys P, Cockell CS, Collins GS, Deutsch A, Goldin TJ, Goto K, Grajales-Nishimura JM, Grieve RA, Gulick SP, Johnson KR, Kiessling W, Koeberl C, Kring DA, MacLeod KG, Matsui T, Melosh J, Montanari A, Morgan JV, Neal CR, Nichols DJ, Norris RD, Pierazzo E, Ravizza G, Rebolledo-Vieyra M, Reimold WU, Robin E, Salge T, Speijer RP, Sweet AR, Urrutia-Fucugauchi J, Vajda V, Whalen MT, Willumsen PS.Schulte P, et al.Science. 2010 Mar 5;327(5970):1214-8. doi: 10.1126/science.1177265.Science. 2010.PMID:20203042Review.
Cited by
- Timing and causes of forest fire at the K-Pg boundary.Santa Catharina A, Kneller BC, Marques JC, McArthur AD, Cevallos-Ferriz SRS, Theurer T, Kane IA, Muirhead D.Santa Catharina A, et al.Sci Rep. 2022 Jul 29;12(1):13006. doi: 10.1038/s41598-022-17292-y.Sci Rep. 2022.PMID:35906268Free PMC article.
- Ecological restructuring of North Tethyan marine vertebrate communities triggered by the end-Cretaceous extinction.Feichtinger I, Harzhauser M, Pollerspöck J, Auer G, Ćorić S, Kranner M, Kallanxhi ME, Weinmann AE, Guinot G.Feichtinger I, et al.Proc Natl Acad Sci U S A. 2025 Jun 3;122(22):e2409366122. doi: 10.1073/pnas.2409366122. Epub 2025 May 19.Proc Natl Acad Sci U S A. 2025.PMID:40388605
- Fossil-calibrated molecular phylogeny of atlantid heteropods (Gastropoda, Pterotracheoidea).Wall-Palmer D, Janssen AW, Goetze E, Choo LQ, Mekkes L, Peijnenburg KTCA.Wall-Palmer D, et al.BMC Evol Biol. 2020 Sep 21;20(1):124. doi: 10.1186/s12862-020-01682-9.BMC Evol Biol. 2020.PMID:32957910Free PMC article.
- Massive perturbations to atmospheric sulfur in the aftermath of the Chicxulub impact.Junium CK, Zerkle AL, Witts JD, Ivany LC, Yancey TE, Liu C, Claire MW.Junium CK, et al.Proc Natl Acad Sci U S A. 2022 Apr 5;119(14):e2119194119. doi: 10.1073/pnas.2119194119. Epub 2022 Mar 21.Proc Natl Acad Sci U S A. 2022.PMID:35312339Free PMC article.
- Ecosystem function after the K/Pg extinction: decoupling of marine carbon pump and diversity.Birch H, Schmidt DN, Coxall HK, Kroon D, Ridgwell A.Birch H, et al.Proc Biol Sci. 2021 Jun 30;288(1953):20210863. doi: 10.1098/rspb.2021.0863. Epub 2021 Jun 23.Proc Biol Sci. 2021.PMID:34157875Free PMC article.
References
- Schulte P., et al. , The Chicxulub asteroid impact and mass extinction at the Cretaceous-Paleogene boundary. Science 327, 1214–1218 (2010). - PubMed
- Kring D. A., The Chicxulub impact event and its environmental consequences at the Cretaceous-Tertiary boundary. Palaeogeogr. Palaeoclimatol. Palaeoecol. 255, 4–21 (2007).
- Brugger J., Feulner G., Petri S., Baby, it’s cold outside: Climate model simulations of the effects of the asteroid impact at the end of the Cretaceous. Geophys. Res. Lett. 44, 419–427 (2017).
- Sprain C. J., et al. , The eruptive tempo of Deccan volcanism in relation to the Cretaceous-Paleogene boundary. Science 363, 866–870 (2019). - PubMed
- Schoene B., et al. , U-Pb constraints on pulsed eruption of the Deccan Traps across the end-Cretaceous mass extinction. Science 363, 862–866 (2019). - PubMed