Pedigree-based estimation of human mobile element retrotransposition rates
- PMID:31575651
- PMCID: PMC6771411
- DOI: 10.1101/gr.247965.118
Pedigree-based estimation of human mobile element retrotransposition rates
Abstract
Germline mutation rates in humans have been estimated for a variety of mutation types, including single-nucleotide and large structural variants. Here, we directly measure the germline retrotransposition rate for the three active retrotransposon elements: L1,Alu, and SVA. We used three tools for calling mobile element insertions (MEIs) (MELT, RUFUS, and TranSurVeyor) on blood-derived whole-genome sequence (WGS) data from 599 CEPH individuals, comprising 33 three-generation pedigrees. We identified 26 de novo MEIs in 437 births. The retrotransposition rate estimates forAlu elements, one in 40 births, is roughly half the rate estimated using phylogenetic analyses, a difference in magnitude similar to that observed for single-nucleotide variants. The L1 retrotransposition rate is one in 63 births and is within range of previous estimates (1:20-1:200 births). The SVA retrotransposition rate, one in 63 births, is much higher than the previous estimate of one in 900 births. Our large, three-generation pedigrees allowed us to assess parent-of-origin effects and the timing of insertion events in either gametogenesis or early embryonic development. We find a statistically significant paternal bias inAlu retrotransposition. Our study represents the first in-depth analysis of the rate and dynamics of human retrotransposition from WGS data in three-generation human pedigrees.
© 2019 Feusier et al.; Published by Cold Spring Harbor Laboratory Press.
Figures




Similar articles
- Rates and patterns of great ape retrotransposition.Hormozdiari F, Konkel MK, Prado-Martinez J, Chiatante G, Herraez IH, Walker JA, Nelson B, Alkan C, Sudmant PH, Huddleston J, Catacchio CR, Ko A, Malig M, Baker C; Great Ape Genome Project; Marques-Bonet T, Ventura M, Batzer MA, Eichler EE.Hormozdiari F, et al.Proc Natl Acad Sci U S A. 2013 Aug 13;110(33):13457-62. doi: 10.1073/pnas.1310914110. Epub 2013 Jul 24.Proc Natl Acad Sci U S A. 2013.PMID:23884656Free PMC article.
- The RNA polymerase dictates ORF1 requirement and timing of LINE and SINE retrotransposition.Kroutter EN, Belancio VP, Wagstaff BJ, Roy-Engel AM.Kroutter EN, et al.PLoS Genet. 2009 Apr;5(4):e1000458. doi: 10.1371/journal.pgen.1000458. Epub 2009 Apr 24.PLoS Genet. 2009.PMID:19390602Free PMC article.
- Estimating the retrotransposition rate of human Alu elements.Cordaux R, Hedges DJ, Herke SW, Batzer MA.Cordaux R, et al.Gene. 2006 May 24;373:134-7. doi: 10.1016/j.gene.2006.01.019. Epub 2006 Mar 7.Gene. 2006.PMID:16522357
- Functional impact of the human mobilome.Babatz TD, Burns KH.Babatz TD, et al.Curr Opin Genet Dev. 2013 Jun;23(3):264-70. doi: 10.1016/j.gde.2013.02.007. Epub 2013 Mar 22.Curr Opin Genet Dev. 2013.PMID:23523050Free PMC article.Review.
- Expression of Retroelements in Mammalian Gametes and Embryos.Mastora E, Christodoulaki A, Papageorgiou K, Zikopoulos A, Georgiou I.Mastora E, et al.In Vivo. 2021 Jul-Aug;35(4):1921-1927. doi: 10.21873/invivo.12458.In Vivo. 2021.PMID:34182464Free PMC article.Review.
Cited by
- Mechanisms of disease-associated SINE-VNTR-Alus.Pfaff AL, Singleton LM, Kõks S.Pfaff AL, et al.Exp Biol Med (Maywood). 2022 May;247(9):756-764. doi: 10.1177/15353702221082612. Epub 2022 Apr 6.Exp Biol Med (Maywood). 2022.PMID:35387528Free PMC article.Review.
- A hidden layer of structural variation in transposable elements reveals potential genetic modifiers in human disease-risk loci.van Bree EJ, Guimarães RLFP, Lundberg M, Blujdea ER, Rosenkrantz JL, White FTG, Poppinga J, Ferrer-Raventós P, Schneider AE, Clayton I, Haussler D, Reinders MJT, Holstege H, Ewing AD, Moses C, Jacobs FMJ.van Bree EJ, et al.Genome Res. 2022 Apr;32(4):656-670. doi: 10.1101/gr.275515.121. Epub 2022 Mar 24.Genome Res. 2022.PMID:35332097Free PMC article.
- A potential new mechanism for pregnancy loss: considering the role of LINE-1 retrotransposons in early spontaneous miscarriage.Lou C, Goodier JL, Qiang R.Lou C, et al.Reprod Biol Endocrinol. 2020 Jan 21;18(1):6. doi: 10.1186/s12958-020-0564-x.Reprod Biol Endocrinol. 2020.PMID:31964400Free PMC article.Review.
- No evidence of human genome integration of SARS-CoV-2 found by long-read DNA sequencing.Smits N, Rasmussen J, Bodea GO, Amarilla AA, Gerdes P, Sanchez-Luque FJ, Ajjikuttira P, Modhiran N, Liang B, Faivre J, Deveson IW, Khromykh AA, Watterson D, Ewing AD, Faulkner GJ.Smits N, et al.Cell Rep. 2021 Aug 17;36(7):109530. doi: 10.1016/j.celrep.2021.109530. Epub 2021 Jul 28.Cell Rep. 2021.PMID:34380018Free PMC article.
- Mini-heterochromatin domains constrain the cis-regulatory impact of SVA transposons in human brain development and disease.Horváth V, Garza R, Jönsson ME, Johansson PA, Adami A, Christoforidou G, Karlsson O, Castilla Vallmanya L, Koutounidou S, Gerdes P, Pandiloski N, Douse CH, Jakobsson J.Horváth V, et al.Nat Struct Mol Biol. 2024 Oct;31(10):1543-1556. doi: 10.1038/s41594-024-01320-8. Epub 2024 Jun 4.Nat Struct Mol Biol. 2024.PMID:38834915Free PMC article.
References
- Abyzov A, Iskow R, Gokcumen O, Radke DW, Balasubramanian S, Pei B, Habegger L, The 1000 Genomes Project Consortium, Lee C, Gerstein M. 2013. Analysis of variable retroduplications in human populations suggests coupling of retrotransposition to cell division. Genome Res 23: 2042–2052. 10.1101/gr.154625.113 - DOI - PMC - PubMed
Publication types
MeSH terms
Substances
Related information
Grants and funding
LinkOut - more resources
Full Text Sources