De novo transcriptome profile of coccolithophorid alga Emiliania huxleyi CCMP371 at different calcium concentrations with proteome analysis
- PMID:31465514
- PMCID: PMC6715215
- DOI: 10.1371/journal.pone.0221938
De novo transcriptome profile of coccolithophorid alga Emiliania huxleyi CCMP371 at different calcium concentrations with proteome analysis
Abstract
The haptophyte alga Emiliania huxleyi is the most abundant coccolithophore in the modern ocean and produces elaborate calcite crystals, called coccolith, in a separate intracellular compartment known as the coccolith vesicle. Despite the importance of biomineralization in coccolithophores, the molecular mechanism underlying it remains unclear. Understanding this precise machinery at the molecular level will provide the knowledge needed to enable further manipulation of biomineralization. In our previous study, altering the calcium concentration modified the calcifying ability of E. huxleyi CCMP371. Therefore in this study, we tested E. huxleyi cells acclimated to three different calcium concentrations (0, 0.1, and 10 mM). To understand the whole transcript profile at different calcium concentrations, RNA-sequencing was performed and used for de novo assembly and annotation. The differentially expressed genes (DEGs) among the three different calcium concentrations were analyzed. The functional classification by gene ontology (GO) revealed that 'intrinsic component of membrane' was the most enriched of the GO terms at the ambient calcium concentration (10 mM) compared with the limited calcium concentrations (0 and 0.1 mM). Moreover, the DEGs in those comparisons were enriched mainly in 'secondary metabolites biosynthesis, transport and catabolism' and 'signal transduction mechanisms' in the KOG clusters and 'processing in endoplasmic reticulum', and 'ABC transporters' in the KEGG pathways. Furthermore, metabolic pathways involved in protein synthesis were enriched among the differentially expressed proteins. The results of this study provide a molecular profile for understanding the expression of transcripts and proteins in E. huxleyi at different calcium concentrations, which will help to identify the detailed mechanism of its calcification.
Conflict of interest statement
The authors have declared that no competing interests exist.
Figures







Similar articles
- Association of Phosphatidylinositol-Specific Phospholipase C with Calcium-Induced Biomineralization in the CoccolithophoreEmiliania huxleyi.Nam O, Suzuki I, Shiraiwa Y, Jin E.Nam O, et al.Microorganisms. 2020 Sep 10;8(9):1389. doi: 10.3390/microorganisms8091389.Microorganisms. 2020.PMID:32927844Free PMC article.
- Formation and mosaicity of coccolith segment calcite of the marine algae Emiliania huxleyi.Yin X, Ziegler A, Kelm K, Hoffmann R, Watermeyer P, Alexa P, Villinger C, Rupp U, Schlüter L, Reusch TBH, Griesshaber E, Walther P, Schmahl WW.Yin X, et al.J Phycol. 2018 Feb;54(1):85-104. doi: 10.1111/jpy.12604. Epub 2017 Nov 22.J Phycol. 2018.PMID:29092105
- Expression of biomineralization-related ion transport genes in Emiliania huxleyi.Mackinder L, Wheeler G, Schroeder D, von Dassow P, Riebesell U, Brownlee C.Mackinder L, et al.Environ Microbiol. 2011 Dec;13(12):3250-65. doi: 10.1111/j.1462-2920.2011.02561.x. Epub 2011 Sep 8.Environ Microbiol. 2011.PMID:21902794
- Coccolithophore biomineralization: New questions, new answers.Brownlee C, Wheeler GL, Taylor AR.Brownlee C, et al.Semin Cell Dev Biol. 2015 Oct;46:11-6. doi: 10.1016/j.semcdb.2015.10.027. Epub 2015 Oct 20.Semin Cell Dev Biol. 2015.PMID:26498037Review.
- Regulation of CaCO(3) formation in coccolithophores.Marsh ME.Marsh ME.Comp Biochem Physiol B Biochem Mol Biol. 2003 Dec;136(4):743-54. doi: 10.1016/s1096-4959(03)00180-5.Comp Biochem Physiol B Biochem Mol Biol. 2003.PMID:14662299Review.
Cited by
- Establishment of functional epithelial organoids from human lacrimal glands.Jeong SY, Choi WH, Jeon SG, Lee S, Park JM, Park M, Lee H, Lew H, Yoo J.Jeong SY, et al.Stem Cell Res Ther. 2021 Apr 21;12(1):247. doi: 10.1186/s13287-021-02133-y.Stem Cell Res Ther. 2021.PMID:33883032Free PMC article.
- De novo transcriptome assembly of the green alga Ankistrodesmus falcatus.Schomaker RA, Dudycha JL.Schomaker RA, et al.PLoS One. 2021 May 14;16(5):e0251668. doi: 10.1371/journal.pone.0251668. eCollection 2021.PLoS One. 2021.PMID:33989339Free PMC article.
- Translating proteome and transcriptome dynamics of periodontal ligament stem cell-derived secretome/conditioned medium in an in vitro model of periodontitis.Suh HN, Ji JY, Heo JS.Suh HN, et al.BMC Oral Health. 2024 Mar 27;24(1):390. doi: 10.1186/s12903-024-04167-z.BMC Oral Health. 2024.PMID:38539170Free PMC article.
- Resolving the Microalgal Gene Landscape at the Strain Level: a Novel Hybrid Transcriptome ofEmiliania huxleyi CCMP3266.Sperfeld M, Yahalomi D, Segev E.Sperfeld M, et al.Appl Environ Microbiol. 2022 Jan 25;88(2):e0141821. doi: 10.1128/AEM.01418-21. Epub 2021 Nov 10.Appl Environ Microbiol. 2022.PMID:34757817Free PMC article.
- Discovery of Post-Translational Modifications inEmiliania huxleyi.Duong VA, Nam O, Jin E, Park JM, Lee H.Duong VA, et al.Molecules. 2021 Apr 2;26(7):2027. doi: 10.3390/molecules26072027.Molecules. 2021.PMID:33918234Free PMC article.
References
- Westbroek P, Young J, Linschooten K. Coccolith production (biomineralization) in the marine alga Emiliania huxleyi. Journal of Eukaryotic Microbiology. 1989;36(4):368–73.
- Paasche E. A review of the coccolithophorid Emiliania huxleyi (Prymnesiophyceae), with particular reference to growth, coccolith formation, and calcification-photosynthesis interactions. Phycologia. 2001;40(6):503–29.
- Marsh M. Regulation of CaCO3 formation in coccolithophores. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology. 2003;136(4):743–54. - PubMed
Publication types
MeSH terms
Substances
Related information
Grants and funding
LinkOut - more resources
Full Text Sources