Dielectric Properties for Nanocomposites Comparing Commercial and Synthetic Ni- and Fe3O4-Loaded Polystyrene
- PMID:31458007
- PMCID: PMC6644897
- DOI: 10.1021/acsomega.8b01477
Dielectric Properties for Nanocomposites Comparing Commercial and Synthetic Ni- and Fe3O4-Loaded Polystyrene
Abstract
Nanomaterial-loaded thermoplastics are attractive for applications in adaptive printing methods, as the physical properties of the printed materials are dependent on the nanomaterial type and degree of dispersion. This study compares the dispersion and the impact on the dielectric properties of two common nanoparticles, nickel and iron oxide, loaded into polystyrene. Comparisons between commercial and synthetically prepared samples indicate that well-passivated synthetically prepared nanomaterials are dispersed and minimize the impact on the dielectric properties of the host polymer by limiting particle-particle contacts. Commercial samples were observed to phase-segregate, leading to the loss of the low-k performance of polystyrene. The change in the real and imaginary dielectric was systematically studied in two earth abundant nanoparticles at the concentration between 0 and 13 vol % (0-50 wt %). By varying the volume percentage of fillers in the matrix, it is shown that one can increase the magnetic properties of the materials while minimizing unwanted contributions to the dielectric constant and dielectric loss. The well-dispersed nanoparticle systems were successfully modeled through the Looyenga dielectric theory, thus giving one a predictive ability for the dielectric properties. The current experimental work coupled with modeling could facilitate future material choices and guide design rules for printable polymer composite systems.
Conflict of interest statement
The authors declare no competing financial interest.
Figures








Similar articles
- Fabrication of flexible and self-standing inorganic-organic three phase magneto-dielectric PVDF based multiferroic nanocomposite films through a small loading of graphene oxide (GO) and Fe3O4 nanoparticles.Jayakumar OD, Abdelhamid EH, Kotari V, Mandal BP, Rao R, Jagannath, Naik VM, Naik R, Tyagi AK.Jayakumar OD, et al.Dalton Trans. 2015 Sep 28;44(36):15872-81. doi: 10.1039/c5dt01509j.Dalton Trans. 2015.PMID:26274764
- 1D/2D Carbon Nanomaterial-Polymer Dielectric Composites with High Permittivity for Power Energy Storage Applications.Dang ZM, Zheng MS, Zha JW.Dang ZM, et al.Small. 2016 Apr 6;12(13):1688-701. doi: 10.1002/smll.201503193. Epub 2016 Feb 11.Small. 2016.PMID:26865507
- Enhanced Thermal Conductivity and Dielectric Properties of Iron Oxide/Polyethylene Nanocomposites Induced by a Magnetic Field.Chi Q, Ma T, Dong J, Cui Y, Zhang Y, Zhang C, Xu S, Wang X, Lei Q.Chi Q, et al.Sci Rep. 2017 Jun 8;7(1):3072. doi: 10.1038/s41598-017-03273-z.Sci Rep. 2017.PMID:28596536Free PMC article.
- Fluoro-polymer functionalized graphene for flexible ferroelectric polymer-based high-k nanocomposites with suppressed dielectric loss and low percolation threshold.Yang K, Huang X, Fang L, He J, Jiang P.Yang K, et al.Nanoscale. 2014 Dec 21;6(24):14740-53. doi: 10.1039/c4nr03957b. Epub 2014 Oct 29.Nanoscale. 2014.PMID:25352354
- Performance of dielectric nanocomposites: matrix-free, hairy nanoparticle assemblies and amorphous polymer-nanoparticle blends.Grabowski CA, Koerner H, Meth JS, Dang A, Hui CM, Matyjaszewski K, Bockstaller MR, Durstock MF, Vaia RA.Grabowski CA, et al.ACS Appl Mater Interfaces. 2014 Dec 10;6(23):21500-9. doi: 10.1021/am506521r. Epub 2014 Nov 14.ACS Appl Mater Interfaces. 2014.PMID:25365781
Cited by
- Fe3O4 microplate filled PEI matrix composite with remarkable nonlinear conductive characteristics, dielectric property, and low percolation threshold.Wang H, Li H.Wang H, et al.Heliyon. 2023 Nov 19;9(11):e22514. doi: 10.1016/j.heliyon.2023.e22514. eCollection 2023 Nov.Heliyon. 2023.PMID:38034610Free PMC article.
- Hybrid Dielectric Films of Inkjet-Printable Core-Shell Nanoparticles.Buchheit R, Kuttich B, González-García L, Kraus T.Buchheit R, et al.Adv Mater. 2021 Oct;33(41):e2103087. doi: 10.1002/adma.202103087. Epub 2021 Aug 23.Adv Mater. 2021.PMID:34425032Free PMC article.
References
- Hussain F.; Hojjati M.; Okamoto M.; Gorga R. E. Review Article: Polymer-Matrix Nanocomposites, Processing, Manufacturing, and Application: An Overview. J. Compos. Mater. 2006, 40, 1511–1575. 10.1177/0021998306067321. - DOI
- Marquis D. M.; Guillaume E.; Chivas-Joly C.. Properties of Nanofillers in Polymer. Nanocomposites and Polymers with Analytical Methods; InTech, 2011.
- Šupová M.; Martynková G. S.; Barabaszová K. Effect of Nanofillers Dispersion in Polymer Matrices: A Review. Sci. Adv. Mater. 2011, 3, 1–25. 10.1166/sam.2011.1136. - DOI
- Vaia R. A.; Maguire J. F. Polymer Nanocomposites with Prescribed Morphology: Going beyond Nanoparticle-Filled Polymers. Chem. Mater. 2007, 19, 2736–2751. 10.1021/cm062693+. - DOI
LinkOut - more resources
Full Text Sources