Synchronizing volcanic, sedimentary, and ice core records of Earth's last magnetic polarity reversal
- PMID:31457087
- PMCID: PMC6685714
- DOI: 10.1126/sciadv.aaw4621
Synchronizing volcanic, sedimentary, and ice core records of Earth's last magnetic polarity reversal
Abstract
Reversal of Earth's magnetic field polarity every 105 to 106 years is among the most far-reaching, yet enigmatic, geophysical phenomena. The short duration of reversals make precise temporal records of past magnetic field behavior paramount to understanding the processes that produce them. We correlate new40Ar/39Ar dates from transitionally magnetized lava flows to astronomically dated sediment and ice records to map the evolution of Earth's last reversal. The final 180° polarity reversal at ~773 ka culminates a complex process beginning at ~795 ka with weakening of the field, succeeded by increased field intensity manifested in sediments and ice, and then by an excursion and weakening of intensity at ~784 ka that heralds a >10 ka period wherein sediments record highly variable directions. The 22 ka evolution of this reversal suggested by our findings is mirrored by a numerical geodynamo simulation that may capture much of the naturally observed reversal process.
Figures




Similar articles
- Structural and temporal requirements for geomagnetic field reversal deduced from lava flows.Singer BS, Hoffman KA, Coe RS, Brown LL, Jicha BR, Pringle MS, Chauvin A.Singer BS, et al.Nature. 2005 Mar 31;434(7033):633-6. doi: 10.1038/nature03431.Nature. 2005.PMID:15800621
- Dependence of the duration of geomagnetic polarity reversals on site latitude.Clement BM.Clement BM.Nature. 2004 Apr 8;428(6983):637-40. doi: 10.1038/nature02459.Nature. 2004.PMID:15071591
- Deciphering records of geomagnetic reversals.Valet JP, Fournier A.Valet JP, et al.Rev Geophys. 2016 Jun;54(2):410-446. doi: 10.1002/2015RG000506. Epub 2016 May 17.Rev Geophys. 2016.PMID:31423490Free PMC article.Review.
- Earth's magnetic field is probably not reversing.Brown M, Korte M, Holme R, Wardinski I, Gunnarson S.Brown M, et al.Proc Natl Acad Sci U S A. 2018 May 15;115(20):5111-5116. doi: 10.1073/pnas.1722110115. Epub 2018 Apr 30.Proc Natl Acad Sci U S A. 2018.PMID:29712828Free PMC article.
- On the genesis of the Earth's magnetism.Roberts PH, King EM.Roberts PH, et al.Rep Prog Phys. 2013 Sep;76(9):096801. doi: 10.1088/0034-4885/76/9/096801. Epub 2013 Sep 4.Rep Prog Phys. 2013.PMID:24004491Review.
Cited by
- Late Cambrian geomagnetic instability after the onset of inner core nucleation.Li YX, Tarduno JA, Jiao W, Liu X, Peng S, Xu S, Yang A, Yang Z.Li YX, et al.Nat Commun. 2023 Jul 31;14(1):4596. doi: 10.1038/s41467-023-40309-7.Nat Commun. 2023.PMID:37524710Free PMC article.
- Review of the Early-Middle Pleistocene boundary and Marine Isotope Stage 19.Head MJ.Head MJ.Prog Earth Planet Sci. 2021;8(1):50. doi: 10.1186/s40645-021-00439-2. Epub 2021 Sep 3.Prog Earth Planet Sci. 2021.PMID:34722119Free PMC article.Review.
References
- Channell J. E. T., Complexity in Matuyama–Brunhes polarity transitions from North Atlantic IODP/ODP deep-sea sites. Earth Planet. Sci. Lett. 467, 43–56 (2017).
- Glatzmaier G. A., Coe R. S., Magnetic polarity reversals in the core. Treatise Geophysics 8, 279–295 (2015).
- Shackleton N. J., Berger A., Peltier W. R., An alternative astronomical calibration of the lower Pleistocene timescale based on ODP Site 677. Earth Environ. Sci. Trans. R. Soc. Edinb. 81, 251–261 (1990).
- Tauxe L., Herbert T., Shackleton N. J., Kok Y. S., Astronomical calibration of the Matuyama-Brunhes boundary: Consequences for magnetic remanence acquisition in marine carbonates and the Asian loess sequences. Earth Planet. Sci. Lett. 140, 133–146 (1996).
LinkOut - more resources
Full Text Sources
Research Materials
Miscellaneous