A rigorous electrochemical ammonia synthesis protocol with quantitative isotope measurements
- PMID:31117118
- DOI: 10.1038/s41586-019-1260-x
A rigorous electrochemical ammonia synthesis protocol with quantitative isotope measurements
Erratum in
- Author Correction: A rigorous electrochemical ammonia synthesis protocol with quantitative isotope measurements.Andersen SZ, Čolić V, Yang S, Schwalbe JA, Nielander AC, McEnaney JM, Enemark-Rasmussen K, Baker JG, Singh AR, Rohr BA, Statt MJ, Blair SJ, Mezzavilla S, Kibsgaard J, Vesborg PCK, Cargnello M, Bent SF, Jaramillo TF, Stephens IEL, Nørskov JK, Chorkendorff I.Andersen SZ, et al.Nature. 2019 Oct;574(7777):E5. doi: 10.1038/s41586-019-1625-1.Nature. 2019.PMID:31554972
Abstract
The electrochemical synthesis of ammonia from nitrogen under mild conditions using renewable electricity is an attractive alternative1-4 to the energy-intensive Haber-Bosch process, which dominates industrial ammonia production. However, there are considerable scientific and technical challenges5,6 facing the electrochemical alternative, and most experimental studies reported so far have achieved only low selectivities and conversions. The amount of ammonia produced is usually so small that it cannot be firmly attributed to electrochemical nitrogen fixation7-9 rather than contamination from ammonia that is either present in air, human breath or ion-conducting membranes9, or generated from labile nitrogen-containing compounds (for example, nitrates, amines, nitrites and nitrogen oxides) that are typically present in the nitrogen gas stream10, in the atmosphere or even in the catalyst itself. Although these sources of experimental artefacts are beginning to be recognized and managed11,12, concerted efforts to develop effective electrochemical nitrogen reduction processes would benefit from benchmarking protocols for the reaction and from a standardized set of control experiments designed to identify and then eliminate or quantify the sources of contamination. Here we propose a rigorous procedure using15N2 that enables us to reliably detect and quantify the electrochemical reduction of nitrogen to ammonia. We demonstrate experimentally the importance of various sources of contamination, and show how to remove labile nitrogen-containing compounds from the nitrogen gas as well as how to perform quantitative isotope measurements with cycling of15N2 gas to reduce both contamination and the cost of isotope measurements. Following this protocol, we find that no ammonia is produced when using the most promising pure-metal catalysts for this reaction in aqueous media, and we successfully confirm and quantify ammonia synthesis using lithium electrodeposition in tetrahydrofuran13. The use of this rigorous protocol should help to prevent false positives from appearing in the literature, thus enabling the field to focus on viable pathways towards the practical electrochemical reduction of nitrogen to ammonia.
Similar articles
- Electrochemical Nitrogen Reduction to Ammonia Under Ambient Conditions: Stakes and Challenges.Smita Biswas S, Chakraborty S, Saha A, Eswaramoorthy M.Smita Biswas S, et al.Chem Rec. 2022 Nov;22(11):e202200139. doi: 10.1002/tcr.202200139. Epub 2022 Jul 22.Chem Rec. 2022.PMID:35866503Review.
- Recent Advances and Challenges of Electrocatalytic N2 Reduction to Ammonia.Qing G, Ghazfar R, Jackowski ST, Habibzadeh F, Ashtiani MM, Chen CP, Smith MR 3rd, Hamann TW.Qing G, et al.Chem Rev. 2020 Jun 24;120(12):5437-5516. doi: 10.1021/acs.chemrev.9b00659. Epub 2020 May 27.Chem Rev. 2020.PMID:32459470
- Energy-Efficient Small-Scale Ammonia Synthesis Process with Plasma-Enabled Nitrogen Oxidation and Catalytic Reduction of Adsorbed NOx.Hollevoet L, Vervloessem E, Gorbanev Y, Nikiforov A, De Geyter N, Bogaerts A, Martens JA.Hollevoet L, et al.ChemSusChem. 2022 May 20;15(10):e202102526. doi: 10.1002/cssc.202102526. Epub 2022 Mar 25.ChemSusChem. 2022.PMID:35285575
- Single-Atom Catalysts for the Electrocatalytic Reduction of Nitrogen to Ammonia under Ambient Conditions.Qiu Y, Peng X, Lü F, Mi Y, Zhuo L, Ren J, Liu X, Luo J.Qiu Y, et al.Chem Asian J. 2019 Aug 16;14(16):2770-2779. doi: 10.1002/asia.201900793. Epub 2019 Jul 26.Chem Asian J. 2019.PMID:31290592Review.
- Photocatalytic and electrocatalytic approaches towards atmospheric nitrogen reduction to ammonia under ambient conditions.John J, Lee DK, Sim U.John J, et al.Nano Converg. 2019 Apr 25;6(1):15. doi: 10.1186/s40580-019-0182-5.Nano Converg. 2019.PMID:31025218Free PMC article.Review.
Cited by
- CO2 electroreduction favors carbon isotope12C over13C and facilitates isotope separation.Barecka MH, Kovalev MK, Muhamad MZ, Ren H, Ager JW, Lapkin AA.Barecka MH, et al.iScience. 2023 Sep 26;26(10):107834. doi: 10.1016/j.isci.2023.107834. eCollection 2023 Oct 20.iScience. 2023.PMID:37954138Free PMC article.
- Transition Metal Aluminum Boride as a New Candidate for Ambient-Condition Electrochemical Ammonia Synthesis.Fu Y, Richardson P, Li K, Yu H, Yu B, Donne S, Kisi E, Ma T.Fu Y, et al.Nanomicro Lett. 2020 Feb 28;12(1):65. doi: 10.1007/s40820-020-0400-z.Nanomicro Lett. 2020.PMID:34138306Free PMC article.
- Transition Metal Chalcogenides as a Versatile and Tunable Platform for Catalytic CO2 and N2 Electroreduction.Giuffredi G, Asset T, Liu Y, Atanassov P, Di Fonzo F.Giuffredi G, et al.ACS Mater Au. 2021 May 24;1(1):6-36. doi: 10.1021/acsmaterialsau.1c00006. eCollection 2021 Sep 8.ACS Mater Au. 2021.PMID:36855615Free PMC article.Review.
- Graphdiyne-Induced Iron Vacancy for Efficient Nitrogen Conversion.Fang Y, Xue Y, Hui L, Yu H, Zhang C, Huang B, Li Y.Fang Y, et al.Adv Sci (Weinh). 2022 Jan;9(2):e2102721. doi: 10.1002/advs.202102721. Epub 2021 Nov 7.Adv Sci (Weinh). 2022.PMID:34747572Free PMC article.
- Electrocatalytic Reduction of Dinitrogen to Ammonia with Water as Proton and Electron Donor Catalyzed by a Combination of a Tri-ironoxotungstate and an Alkali Metal Cation.Tzaguy A, Masip-Sánchez A, Avram L, Solé-Daura A, López X, Poblet JM, Neumann R.Tzaguy A, et al.J Am Chem Soc. 2023 Sep 13;145(36):19912-19924. doi: 10.1021/jacs.3c06167. Epub 2023 Aug 29.J Am Chem Soc. 2023.PMID:37642197Free PMC article.
Publication types
LinkOut - more resources
Full Text Sources
Other Literature Sources