Movatterモバイル変換


[0]ホーム

URL:


Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
Thehttps:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

NIH NLM Logo
Log inShow account info
Access keysNCBI HomepageMyNCBI HomepageMain ContentMain Navigation
pubmed logo
Advanced Clipboard
User Guide

Full text links

American Chemical Society full text link American Chemical Society
Full text links

Actions

.2019 Feb 6;11(5):4745-4756.
doi: 10.1021/acsami.8b15586. Epub 2019 Jan 23.

Facile Fabrication of Magnetic Microrobots Based on Spirulina Templates for Targeted Delivery and Synergistic Chemo-Photothermal Therapy

Facile Fabrication of Magnetic Microrobots Based on Spirulina Templates for Targeted Delivery and Synergistic Chemo-Photothermal Therapy

Xu Wang et al. ACS Appl Mater Interfaces..

Abstract

Magnetic microrobots can be actuated in fuel-free conditions and are envisioned for biomedical applications related to targeted delivery and therapy in a minimally invasive manner. However, mass fabrication of microrobots with precise propulsion performance and excellent therapeutic efficacy is still challenging, especially in a predictable and controllable manner. Herein, we propose a facile technique for mass production of magnetic microrobots with multiple functions using Spirulina ( Sp.) as biotemplate. Core-shell-structured Pd@Au nanoparticles (NPs) were synthesized in Sp. cells by electroless deposition, working as photothermal conversion agents. Subsequently, the Fe3O4 NPs were deposited onto the surface of the obtained (Pd@Au)@ Sp. particles via a sol-gel process, enabling them to be magnetically actuated. Moreover, the anticancer drug doxorubicin (DOX) was loaded on the (Pd@Au)/Fe3O4@ Sp. microrobots, which endows them with additional chemotherapeutic efficacy. The as-prepared biohybrid (Pd@Au)/Fe3O4@ Sp.-DOX microrobots not only possess efficient propulsion performance with the highest speed of 526.2 μm/s under a rotating magnetic field but also have enhanced synergistic chemo-photothermal therapeutic efficacy. Furthermore, they can be structurally disassembled into individual particles under near-infrared (NIR) laser irradiation and exhibit pH- and NIR-triggered drug release. These intriguing properties enable the microrobots to be a very promising and efficient platform for drug loading, targeted delivery, and chemo-photothermal therapy.

Keywords: Spirulina; chemo-photothermal therapy; drug loading; magnetic microrobots; targeted delivery.

PubMed Disclaimer

MeSH terms

Substances

LinkOut - more resources

Full text links
American Chemical Society full text link American Chemical Society
Cite
Send To

NCBI Literature Resources

MeSHPMCBookshelfDisclaimer

The PubMed wordmark and PubMed logo are registered trademarks of the U.S. Department of Health and Human Services (HHS). Unauthorized use of these marks is strictly prohibited.


[8]ページ先頭

©2009-2026 Movatter.jp