Antimicrobial properties of a novel copper-based composite coating with potential for use in healthcare facilities
- PMID:30627427
- PMCID: PMC6321648
- DOI: 10.1186/s13756-018-0456-4
Antimicrobial properties of a novel copper-based composite coating with potential for use in healthcare facilities
Abstract
Background: Healthcare-associated infections (HAIs) have a major impact on public health worldwide. Particularly, hospital surfaces contaminated with bacterial pathogens are often the origin of both sporadic cases and outbreaks of HAIs. It has been demonstrated that copper surfaces reduce the microbial burden of high touch surfaces in the hospital environment. Here we report the antimicrobial characterization of a novel composite coating with embedded copper particles, named Copper Armour™.
Methods: The Copper Armour™ bactericidal activity was evaluated in in vitro assays against several bacterial pathogens, includingStaphylococcus aureus,Pseudomonas aeruginosa,Escherichia coli O157:H7 andListeria monocytogenes. Additionally, its antimicrobial properties were also evaluated in a pilot study over a nine-week period at an adult intensive care unit. For this, four high touch surfaces, including bed rails, overbed table, bedside table and IV Pole, were coated with Cooper Armour™, and its microbial burden was determined over a nine-week period.
Results: Copper Armour™ coated samples showed an in vitro reduction in bacterial burden of > 99.9% compared to control samples. Moreover, pilot study results indicate that Copper Armour™ significantly reduces the level of microbial contamination on high-touch surfaces in the hospital environment, as compared with standard surfaces.
Conclusions: Based on its antimicrobial properties, Copper Armour™ is a novel self-sanitizing coating that exhibits bactericidal activity against important human pathogens and significantly reduces the microbial burden of hospital surfaces. This composite could be used as a self-sanitizing coating to complement infection control strategies in healthcare facilities.
Keywords: Antimicrobial copper; Copper-based composite; Healthcare-associated infections; High-touch surfaces; Self-sanitizing coating.
Conflict of interest statement
The Ethics Committee of the Hospital Clínico de la Universidad de Chile approved the study protocols and an informed consent was not required to obtain samples from hospital surfaces.Not applicable.MG and CR are Directors of ATACAMALAB, a for profit Company aiming to develop energy efficient products including novel uses for copper.Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Figures



Similar articles
- How Does a Photocatalytic Antimicrobial Coating Affect Environmental Bioburden in Hospitals?Reid M, Whatley V, Spooner E, Nevill AM, Cooper M, Ramsden JJ, Dancer SJ.Reid M, et al.Infect Control Hosp Epidemiol. 2018 Apr;39(4):398-404. doi: 10.1017/ice.2017.297. Epub 2018 Feb 12.Infect Control Hosp Epidemiol. 2018.PMID:29428003
- Specific antibacterial activity of copper alloy touch surfaces in five long-term care facilities for older adults.Colin M, Charpentier E, Klingelschmitt F, Bontemps C, De Champs C, Reffuveille F, Gangloff SC.Colin M, et al.J Hosp Infect. 2020 Mar;104(3):283-292. doi: 10.1016/j.jhin.2019.11.021. Epub 2019 Dec 3.J Hosp Infect. 2020.PMID:31809775
- The antimicrobial efficacy of copper alloy furnishing in the clinical environment: a crossover study.Karpanen TJ, Casey AL, Lambert PA, Cookson BD, Nightingale P, Miruszenko L, Elliott TS.Karpanen TJ, et al.Infect Control Hosp Epidemiol. 2012 Jan;33(1):3-9. doi: 10.1086/663644. Epub 2011 Dec 7.Infect Control Hosp Epidemiol. 2012.PMID:22173515
- High-touch surfaces: microbial neighbours at hand.Cobrado L, Silva-Dias A, Azevedo MM, Rodrigues AG.Cobrado L, et al.Eur J Clin Microbiol Infect Dis. 2017 Nov;36(11):2053-2062. doi: 10.1007/s10096-017-3042-4. Epub 2017 Jun 25.Eur J Clin Microbiol Infect Dis. 2017.PMID:28647859Free PMC article.Review.
- Antimicrobial surfaces to prevent healthcare-associated infections: a systematic review.Muller MP, MacDougall C, Lim M; Ontario Agency for Health Protection and Promotion Public Health Ontario; Provincial Infectious Diseases Advisory Committee on Infection Prevention and Control; Provincial Infectious Diseases Advisory Committee on Infection Prevention and Control.Muller MP, et al.J Hosp Infect. 2016 Jan;92(1):7-13. doi: 10.1016/j.jhin.2015.09.008. Epub 2015 Oct 3.J Hosp Infect. 2016.PMID:26601608Review.
Cited by
- Copper-Based Antibiotic Strategies: Exploring Applications in the Hospital Setting and the Targeting of Cu Regulatory Pathways and Current Drug Design Trends.Orta-Rivera AM, Meléndez-Contés Y, Medina-Berríos N, Gómez-Cardona AM, Ramos-Rodríguez A, Cruz-Santiago C, González-Dumeng C, López J, Escribano J, Rivera-Otero JJ, Díaz-Rivera J, Díaz-Vélez SC, Feliciano-Delgado Z, Tinoco AD.Orta-Rivera AM, et al.Inorganics (Basel). 2023 Jun;11(6):252. doi: 10.3390/inorganics11060252. Epub 2023 Jun 8.Inorganics (Basel). 2023.PMID:39381734Free PMC article.
- Efficacy of copper blend coatings in reducing SARS-CoV-2 contamination.Glass A, Klinkhammer KE, Christofferson RC, Mores CN.Glass A, et al.Biometals. 2023 Feb;36(1):217-225. doi: 10.1007/s10534-022-00473-7. Epub 2022 Dec 7.Biometals. 2023.PMID:36474101Free PMC article.
- Nanostructured Copper Selenide Coatings for Antifouling Applications.Mancillas-Salas S, Ledón-Smith JÁ, Pérez-Álvarez M, Cadenas-Pliego G, Mata-Padilla JM, Andrade-Guel M, Esparza-González SC, Vargas-Gutiérrez G, Sierra-Gómez UA, Saucedo-Salazar EM.Mancillas-Salas S, et al.Polymers (Basel). 2024 Feb 9;16(4):489. doi: 10.3390/polym16040489.Polymers (Basel). 2024.PMID:38399867Free PMC article.
- Antimicrobial coating innovations to prevent infectious disease: a consensus view from the AMiCl COST Action.Dunne CP, Askew PD, Papadopoulos T, Gouveia IC, Ahonen M, Modic M, Azevedo NF, Schulte S, Cosemans P, Kahru A, Murzyn K, Keevil CW, Riool M, Keinänen-Toivola MM; AMiCI Consortium.Dunne CP, et al.J Hosp Infect. 2020 Jun;105(2):116-118. doi: 10.1016/j.jhin.2020.04.006. Epub 2020 Apr 9.J Hosp Infect. 2020.PMID:32278702Free PMC article.No abstract available.
- Recent advances in copper and copper-derived materials for antimicrobial resistance and infection control.Bisht N, Dwivedi N, Kumar P, Venkatesh M, Yadav AK, Mishra D, Solanki P, Verma NK, Lakshminarayanan R, Ramakrishna S, Mondal DP, Srivastava AK, Dhand C.Bisht N, et al.Curr Opin Biomed Eng. 2022 Dec;24:100408. doi: 10.1016/j.cobme.2022.100408. Epub 2022 Aug 23.Curr Opin Biomed Eng. 2022.PMID:36033159Free PMC article.Review.
References
- Ministerio de Salud. Gobierno de Chile. Informe de Vigilancia de Infecciones Asociadas a la Atención en Salud [Internet]. 2015. Available from:http://web.minsal.cl/wp-content/uploads/2017/09/informe-vigilancia-2015.pdf
- Barriga J, Cerda J, Abarca K, Ferrés M, Fajuri P, Riquelme M, et al. Infecciones asociadas a la atención en salud (IAAS) en pacientes pediátricos post-operados de cardiopatías congénitas. Rev Chil infectología Sociedad Chilena de Infectología. 2014;31:16–20. doi: 10.4067/S0716-10182014000100002. - DOI - PubMed
- Scott RD. The direct medical costs of healthcare-associated infections in U.S. hospitals and the benefits of prevention [internet]. Atlanta: centers for disease control and Prevention; 2009. Available from:http://www.cdc.gov/hai/pdfs/hai/scott_costpaper.pdf
- Pola B, Nercelles P, Pohlenza M, Otaiza F. Costo de las infecciones intrahospitalarias en hospitales chilenos de alta y mediana complejidad. Rev Chil infectología. Sociedad Chilena de Infectología. 2003;20:285–290.
Publication types
MeSH terms
Substances
Related information
LinkOut - more resources
Full Text Sources
Other Literature Sources