Molecular palaeontology illuminates the evolution of ecdysozoan vision
- PMID:30518575
- PMCID: PMC6283943
- DOI: 10.1098/rspb.2018.2180
Molecular palaeontology illuminates the evolution of ecdysozoan vision
Abstract
Colour vision is known to have arisen only twice-once in Vertebrata and once within the Ecdysozoa, in Arthropoda. However, the evolutionary history of ecdysozoan vision is unclear. At the molecular level, visual pigments, composed of a chromophore and a protein belonging to the opsin family, have different spectral sensitivities and these mediate colour vision. At the morphological level, ecdysozoan vision is conveyed by eyes of variable levels of complexity; from the simple ocelli observed in the velvet worms (phylum Onychophora) to the marvellously complex eyes of insects, spiders, and crustaceans. Here, we explore the evolution of ecdysozoan vision at both the molecular and morphological level; combining analysis of a large-scale opsin dataset that includes previously unknown ecdysozoan opsins with morphological analyses of key Cambrian fossils with preserved eye structures. We found that while several non-arthropod ecdysozoan lineages have multiple opsins, arthropod multi-opsin vision evolved through a series of gene duplications that were fixed in a period of 35-71 million years (Ma) along the stem arthropod lineage. Our integrative study of the fossil and molecular record of vision indicates that fossils with more complex eyes were likely to have possessed a larger complement of opsin genes.
Keywords: evolution; opsin; phylogeny; vision.
© 2018 The Authors.
Conflict of interest statement
We have no competing interests.
Figures



Similar articles
- Acute vision in the giant Cambrian predator Anomalocaris and the origin of compound eyes.Paterson JR, García-Bellido DC, Lee MS, Brock GA, Jago JB, Edgecombe GD.Paterson JR, et al.Nature. 2011 Dec 7;480(7376):237-40. doi: 10.1038/nature10689.Nature. 2011.PMID:22158247
- Opsins in onychophora (velvet worms) suggest a single origin and subsequent diversification of visual pigments in arthropods.Hering L, Henze MJ, Kohler M, Kelber A, Bleidorn C, Leschke M, Nickel B, Meyer M, Kircher M, Sunnucks P, Mayer G.Hering L, et al.Mol Biol Evol. 2012 Nov;29(11):3451-8. doi: 10.1093/molbev/mss148. Epub 2012 Jun 7.Mol Biol Evol. 2012.PMID:22683812
- Molecular evolution of arthropod color vision deduced from multiple opsin genes of jumping spiders.Koyanagi M, Nagata T, Katoh K, Yamashita S, Tokunaga F.Koyanagi M, et al.J Mol Evol. 2008 Feb;66(2):130-7. doi: 10.1007/s00239-008-9065-9. Epub 2008 Jan 24.J Mol Evol. 2008.PMID:18217181
- Arthropod phylogeny: an overview from the perspectives of morphology, molecular data and the fossil record.Edgecombe GD.Edgecombe GD.Arthropod Struct Dev. 2010 Mar-May;39(2-3):74-87. doi: 10.1016/j.asd.2009.10.002. Epub 2009 Nov 10.Arthropod Struct Dev. 2010.PMID:19854297Review.
- The Phylogeny and Evolutionary History of Arthropods.Giribet G, Edgecombe GD.Giribet G, et al.Curr Biol. 2019 Jun 17;29(12):R592-R602. doi: 10.1016/j.cub.2019.04.057.Curr Biol. 2019.PMID:31211983Review.
Cited by
- New opabiniid diversifies the weirdest wonders of the euarthropod stem group.Pates S, Wolfe JM, Lerosey-Aubril R, Daley AC, Ortega-Hernández J.Pates S, et al.Proc Biol Sci. 2022 Feb 9;289(1968):20212093. doi: 10.1098/rspb.2021.2093. Epub 2022 Feb 9.Proc Biol Sci. 2022.PMID:35135344Free PMC article.
- Insights into the 400 million-year-old eyes of giant sea scorpions (Eurypterida) suggest the structure of Palaeozoic compound eyes.Schoenemann B, Poschmann M, Clarkson ENK.Schoenemann B, et al.Sci Rep. 2019 Nov 28;9(1):17797. doi: 10.1038/s41598-019-53590-8.Sci Rep. 2019.PMID:31780700Free PMC article.
- A combinatorial cis-regulatory logic restricts color-sensing Rhodopsins to specific photoreceptor subsets in Drosophila.Poupault C, Choi D, Lam-Kamath K, Dewett D, Razzaq A, Bunker J, Perry A, Cho I, Rister J.Poupault C, et al.PLoS Genet. 2021 Jun 23;17(6):e1009613. doi: 10.1371/journal.pgen.1009613. eCollection 2021 Jun.PLoS Genet. 2021.PMID:34161320Free PMC article.
- Analysis of the genetically tractable crustacean Parhyale hawaiensis reveals the organisation of a sensory system for low-resolution vision.Ramos AP, Gustafsson O, Labert N, Salecker I, Nilsson DE, Averof M.Ramos AP, et al.BMC Biol. 2019 Aug 15;17(1):67. doi: 10.1186/s12915-019-0676-y.BMC Biol. 2019.PMID:31416484Free PMC article.
- The diversity of invertebrate visual opsins spanning Protostomia, Deuterostomia, and Cnidaria.Roberts NS, Hagen JFD, Johnston RJ Jr.Roberts NS, et al.Dev Biol. 2022 Dec;492:187-199. doi: 10.1016/j.ydbio.2022.10.011. Epub 2022 Oct 19.Dev Biol. 2022.PMID:36272560Free PMC article.Review.
References
- Parker AR. 1998. Colour in Burgess Shale animals and the effect of light on evolution in the Cambrian. Proc. R. Soc. Lond. B 265, 967–972. (10.1098/rspb.1998.0385) - DOI
- Marshall CR. 2006. Explaining the Cambrian ‘explosion’ of animals. Annu. Rev. Earth Planet. Sci. 34, 355–384. (10.1146/annurev.earth.33.031504.103001) - DOI
- Erwin DH, Valentine JW. 2012. The Cambrian explosion: the construction of animal biodiversity. Greenwood Village, CO: Roberts & Company.
Publication types
MeSH terms
Associated data
LinkOut - more resources
Full Text Sources
Other Literature Sources