Ten things you should know about transposable elements
- PMID:30454069
- PMCID: PMC6240941
- DOI: 10.1186/s13059-018-1577-z
Ten things you should know about transposable elements
Abstract
Transposable elements (TEs) are major components of eukaryotic genomes. However, the extent of their impact on genome evolution, function, and disease remain a matter of intense interrogation. The rise of genomics and large-scale functional assays has shed new light on the multi-faceted activities of TEs and implies that they should no longer be marginalized. Here, we introduce the fundamental properties of TEs and their complex interactions with their cellular environment, which are crucial to understanding their impact and manifold consequences for organismal biology. While we draw examples primarily from mammalian systems, the core concepts outlined here are relevant to a broad range of organisms.
Conflict of interest statement
Competing interests
The authors declare that they have no competing interests.
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Figures


Similar articles
- The plastic genome: The impact of transposable elements on gene functionality and genomic structural variations.Fambrini M, Usai G, Vangelisti A, Mascagni F, Pugliesi C.Fambrini M, et al.Genesis. 2020 Dec;58(12):e23399. doi: 10.1002/dvg.23399. Epub 2020 Nov 24.Genesis. 2020.PMID:33230956Review.
- The impact of transposable elements on eukaryotic genomes: from genome size increase to genetic adaptation to stressful environments.Chénais B, Caruso A, Hiard S, Casse N.Chénais B, et al.Gene. 2012 Nov 1;509(1):7-15. doi: 10.1016/j.gene.2012.07.042. Epub 2012 Aug 16.Gene. 2012.PMID:22921893Review.
- Species-specific chromatin landscape determines how transposable elements shape genome evolution.Huang Y, Shukla H, Lee YCG.Huang Y, et al.Elife. 2022 Aug 23;11:e81567. doi: 10.7554/eLife.81567.Elife. 2022.PMID:35997258Free PMC article.
- Transposable elements in the genomes: parasites, junks or drivers of evolution?Gbadegesin MA.Gbadegesin MA.Afr J Med Med Sci. 2012 Dec;41 Suppl:13-25.Afr J Med Med Sci. 2012.PMID:23678632Review.
- Transposable elements as genetic accelerators of evolution: contribution to genome size, gene regulatory network rewiring and morphological innovation.Nishihara H.Nishihara H.Genes Genet Syst. 2020 Jan 30;94(6):269-281. doi: 10.1266/ggs.19-00029. Epub 2020 Jan 10.Genes Genet Syst. 2020.PMID:31932541Review.
Cited by
- Evolutionary adaptation of an HP1-protein chromodomain integrates chromatin and DNA sequence signals.Baumgartner L, Ipsaro JJ, Hohmann U, Handler D, Schleiffer A, Duchek P, Brennecke J.Baumgartner L, et al.Elife. 2024 Jul 12;13:RP93194. doi: 10.7554/eLife.93194.Elife. 2024.PMID:38995818Free PMC article.
- ELOA3: A primate-specific RNA polymerase II elongation factor encoded by a tandem repeat gene cluster.Morgan MAJ, Mohammad Parast S, Iwanaszko M, Aoi Y, Yoo D, Dumar ZJ, Howard BC, Helmin KA, Liu Q, Thakur WR, Zeidner JM, Singer BD, Eichler EE, Shilatifard A.Morgan MAJ, et al.Sci Adv. 2023 Nov 24;9(47):eadj1261. doi: 10.1126/sciadv.adj1261. Epub 2023 Nov 22.Sci Adv. 2023.PMID:37992162Free PMC article.
- Characterization of Repetitive DNA inSaccharum officinarum andSaccharum spontaneum by Genome Sequencing and Cytological Assays.Wang K, Xiang D, Xia K, Sun B, Khurshid H, Esh AMH, Zhang H.Wang K, et al.Front Plant Sci. 2022 Feb 22;13:814620. doi: 10.3389/fpls.2022.814620. eCollection 2022.Front Plant Sci. 2022.PMID:35273624Free PMC article.
- Conversion of DNA Sequences: From a Transposable Element to a Tandem Repeat or to a Gene.Paço A, Freitas R, Vieira-da-Silva A.Paço A, et al.Genes (Basel). 2019 Dec 5;10(12):1014. doi: 10.3390/genes10121014.Genes (Basel). 2019.PMID:31817529Free PMC article.Review.
- Transposable Elements: Major Players in Shaping Genomic and Evolutionary Patterns.Colonna Romano N, Fanti L.Colonna Romano N, et al.Cells. 2022 Mar 19;11(6):1048. doi: 10.3390/cells11061048.Cells. 2022.PMID:35326499Free PMC article.Review.
References
- Greenblatt IM, Brink RA. Transpositions of modulator in maize into divided and undivided chromosome segments. Nature. 1963;197:412–413. doi: 10.1038/197412a0. - DOI
Publication types
MeSH terms
Substances
Related information
Grants and funding
- R01 GM112972/GM/NIGMS NIH HHS/United States
- R35 GM122550/GM/NIGMS NIH HHS/United States
- R01 CA163705/CA/NCI NIH HHS/United States
- P01 AG047200/AG/NIA NIH HHS/United States
- 206688/Z/17/Z/WT_/Wellcome Trust/United Kingdom
- R01 GM059290/GM/NIGMS NIH HHS/United States
- P01 AG051449/AG/NIA NIH HHS/United States
- R01 AG046320/AG/NIA NIH HHS/United States
- R01 GM077582/GM/NIGMS NIH HHS/United States
- R01 GM124531/GM/NIGMS NIH HHS/United States
- 294742/ERC_/European Research Council/International
- R01 AG027237/AG/NIA NIH HHS/United States
LinkOut - more resources
Full Text Sources
Other Literature Sources